
A note on implementing the admissible semantics

DungAF’s implementation of the admissible semantics essentially comprises three
stages —

1. The first stage finds the defence-sets around each argument. An argument’s
defence-sets are those sets of arguments which (i) include the argument; and
(ii) are admissible; and (iii) subsume no other set satisfying (i) and (ii) [1].

2. The second stage uses the set of all defence-sets to find the preferred extensions.

3. The third stage uses the preferred extensions to find the remaining (non-
minimal, non-maximal) non-empty admissible sets, if any exist.

While the second and third stages are straightforward, the first stage is less so.
DungAF uses a simplified and slightly modified version of Vreeswijk’s algorithm to
determine the defence-sets around an argument [1]. Vreeswijk’s algorithm was de-
signed to generate labelled defence-sets1, and includes a slight error; DungAF’s version
is simplified in that it generates merely defence-sets, and is modified to address the
error.

DungAF’s algorithm is given below. Vreeswijk provides the outline of a proof
for his algorithm [1], and this proof is substantially adequate for the modified
version of the algorithm. Furthermore, the test classes TestWithAspartix and
TestDefenceSets suggest that the modified version (as implemented by the method
getDefenceSetsAround(String)) is correct. However, a separate sketched proof is
also given below.

Algorithm 1: modifiedVreeswijk06(. . .)

Let target-arg be the argument whose defence-sets are sought. modifiedVreeswijk06
takes the following parameters:

1. arg-fram — an argumentation framework;

2. path — a list of arguments;

3. can-sols — a set of candidate-solutions. Loosely speaking, a candidate-solution
cs is such that the algorithm has not yet established that cs is neither (a) a
defence-set around target-arg ; nor (b) a strict subset of such a defence-set.

4. current-arg — either target-arg ; or an argument arg which attacks some ar-
gument in every cs ∈ can-sols, and is not attacked by any cs ∈ can-sols; or,
given such an argument arg, an argument arg ′ which attacks arg, and is such
that for every cs ∈ can-sols, (cs ∪ {arg ′}) is conflict-free.

1The label denotes, in each case, whether the defence-set is merely an admissible set, or an
admissible set which is also a subset of the grounded extension.

1

Algorithm 1: modifiedVreeswijk06(arg-fram, current-arg, path, can-sols)

input : The argumentation framework arg-fram; the argument current-arg ; the list of arguments path; the set
of argument-sets can-sols.

output : The defence-sets around current-arg in arg-fram.

on-pro-arg = path is even-length; // find whether current-arg is a pro-arg or opp-arg.1

// If can-sols is empty, there are no candidate-solutions to consider, so return ∅. Otherwise

if current-arg attacks itself, it cannot be used to expand any S ∈ can-sols to form an

admissible set, so return ∅, if on-pro-arg.

if either can-sols = ∅ or (on-pro-arg & current-arg attacks itself in arg-fram) then2

return ∅;3

end4

add current-arg to path;5

if on-pro-arg then add current-arg to each S ∈ can-sols;6

else accumulated-can-sols = ∅;7

// Recurse for arguments attacking current-arg, as appropriate.

foreach argument attacker attacking current-arg in arg-fram do8

relevant-can-sols = ∅;9

if on-pro-arg then self-defensive-can-sols = ∅;10

foreach S ∈ can-sols do11

if on-pro-arg then12

if no arg ∈ S attacks attacker in arg-fram then add S to relevant-can-sols;13

else add S to self-defensive-can-sols;14

end15

else16

if (S ∪ {attacker}) is conflict-free in arg-fram then add S to relevant-can-sols;17

end18

end19

// If on-pro-arg, redefine can-sols...

if on-pro-arg then20

can-sols = modifiedVreeswijk06(arg-fram, attacker , path, relevant-can-sols);21

add all of self-defensive-can-sols to can-sols;22

remove all non-minimal members of can-sols;23

if can-sols is empty then break; // not necessary, but sensible.24

end25

// ...otherwise augment accumulated-can-sols.

else26

add all of modifiedVreeswijk06(arg-fram, attacker , path, relevant-can-sols) to accumulated-can-sols;27

remove all non-minimal members of accumulated-can-sols;28

end29

end30

if not on-pro-arg then can-sols = accumulated-can-sols;31

remove current-arg from path;32

return can-sols;33

2

An external call to the algorithm supplies as parameters (i) the relevant argumen-
tation framework, (ii) the empty list, (iii) {∅} and (iv) target-arg. In the interval
between the calling and return of the externally-called instance, a complete or partial
depth-first exploration of the tree rooted in target-arg in arg-fram is performed, and
the sets returned by the externally-called instance are derived from that exploration.
The algorithm recurses with (some or all) steps taken downwards through the tree.
In each recursively-called instance, arg-fram is the argumentation framework which
was passed to the calling instance; current-arg is the argument down to which the
search has stepped; path is the list of arguments which had been passed to the calling
instance, extended by the argument which had been passed to the calling instance;
and can-sols is an appropriately updated version of the set of candidate-solutions
which had been passed to the calling instance.

Each instance of the algorithm proceeds as follows. First it finds whether current-
arg is a pro-arg or an opp-arg — i.e. whether, if added to path, it would have the same
parity as the first argument, which must be target-arg, and hence would intuitively be
pro-target-arg, given that every argument in path attacks its predecessor. If current-
arg is an opp-arg, the instance is on-opp-arg ; otherwise it is on-pro-arg (line 1).
Except in trivial scenarios (lines 2–4), the algorithm then proceeds as follows. It
first adds current-arg to path, in order to ensure that recursively-called instances of
the algorithm are correctly classified as on-pro-arg or on-opp-arg (line 5). If this
instance is on-pro-arg, current-arg is added to every member of can-sols ; otherwise
an empty set is prepared to store new candidate-solutions (lines 6–7). The algorithm
then recurses for some or all of the arguments attacking current-arg (lines 8–30).
The arrangement of this recursion and the treatment of the output of each called
instance of the algorithm depends on whether the calling instance is on-pro-arg or
on-opp-arg.

Suppose first that the calling instance is on-pro-arg. If current-arg = target-
arg, can-sols contains just {target-arg}, and this recursive stage just continues the
process of setting in motion the series of recursions which will eventually produce
current-arg ’s defence-sets. Otherwise current-arg is an argument which defends each
member of can-sols against some argument arg ′ which attacks an argument common
to all of them; current-arg is not itself in conflict with with any of those candidate-
solutions, and hence each of the latter remains conflict-free upon the addition of
current-arg (line 6). The recursive stage therefore addresses a particular sub-task
— to set in motion the series of recursions which will eventually determine which (if
any) of the members of can-sols are suitably defended by current-arg against arg ′.
Since current-arg is not in conflict with any can-soli ∈ can-sols, its suitability as a
defender of each can-soli ∈ can-sols against arg ′ is in question in only one respect —
whether there is a defence-set around current-arg, such that its union with can-soli
is conflict-free2.

Let attacker be an argument attacking current-arg (line 8); let self-defensive-can-
sols be those members of can-sols which attack attacker ; and let relevant-can-sols =

2Of course, even if can-soli can be expanded to form a conflict-free set which subsumes a defence-
set around current-arg, it need not also be a subset of any of the sought defence-sets. With respect
to the latter issue, the suitability of current-arg as a defender of each can-soli ∈ can-sols against
arg ′ is in question in a broader respect — whether there is a defence-set around current-arg, such
that its union with can-soli is (strictly or non-strictly) subsumed by any of the sought defence-sets.

3

(can-sols\self-defensive-can-sols) (lines 9–15). relevant-can-sols therefore comprises
those members of can-sols rendered inadmissible by attacker ; it is not yet clear that
those members cannot be expanded to form defence-sets, but if they are to be so
expanded, we must look more closely at the place of attacker in arg-fram. Hence
the algorithm recurses for attacker, supplying arg-fram, the (now extended) path,
relevant-can-sols and attacker to the called instance.

The calling instance then redefines can-sols as the output of the called instance.
It then adds all of the self-defensive-can-sols to can-sols, and finally removes the
non-minimal members of can-sols (lines 21–23). It might be that these latter are
subsumed by defence-sets around target-arg, but they can be safely discarded, for
the retention of their minimal counterparts ensures that any such defence-sets will
be found anyway.

If can-sols is now empty, the recursive stage of the algorithm ceases, even if
there remain arguments attacking current-arg for which the algorithm has not yet
recursed (line 24). For the emptiness of can-sols implies that there is no defence
against attacker which suits any of the candidate-solutions which were passed to the
calling instance — i.e. that none of those candidate-solutions can be expanded to
form any admissible set which includes current-arg. There is therefore no need to
consider any further arguments attacking current-arg.

If, on the other hand, can-sols is not empty, the algorithm recurses for some
other attacker of current-arg for which the algorithm has not yet recursed. There-
fore in the course of the recursive stage, can-sols might fluctuate considerably, now
increasing, now decreasing in cardinality. In the end, can-sols will not include any
of the candidate-solutions which were passed to the calling instance, but each of
its members will subsume at least one of those candidate-solutions. Each might
substantially subsume its counterpart S, but might not do so — if (and only if)
S was such that (S ∪{current-arg}) defended current-arg against all attacks, would
(S ∪ {current-arg}) ∈ can-sols at line 33.

Suppose now that the calling instance is on-opp-arg. current-arg not merely at-
tacks each member of can-sols (by virtue of attacking an argument common to all of
them), but is not itself attacked by any of them, and hence renders them inadmissi-
ble. This recursive stage therefore sets in motion the series of recursions which will
eventually determine, for each can-soli ∈ can-sols, which of the arguments attacking
current-arg are suitable defenders of can-soli against current-arg — that is, which of
them have at least one defence-set such that its union with can-soli is conflict-free.

Again let attacker be an argument attacking current-arg (line 8). This time let
relevant-can-sols be those members of can-sols which are not in conflict with attacker
— i.e. those members for which attacker is not immediately obviously unsuitable as
a defender against current-arg (line 11; lines 16–18). The calling instance recurses,
supplying arg-fram, the (now extended) path, relevant-can-sols and attacker to the
called instance, and adds the output to accumulated-can-sols (line 27).

As would not necessarily be the case were the calling instance on-pro-arg, the
calling instance recurses for all arguments attacking current-arg — i.e. regardless
of whether any called instance returns the empty set. For the correctness of the
algorithm demands that all possible defenders of the members of can-sols against
current-arg be considered. The output of the called instances — accumulated-can-
sols — can, however, be safely filtered to remove the non-minimal members (line 28),

4

as the retention of their minimal counterparts guarantees that correctness is not
thereby endangered.

After its recursive stage, then if the algorithm is on-opp-arg, it redefines can-sols
as accumulated-can-sols (line 31). Regardless of whether the instance is on-opp-
arg, the algorithm must remove current-arg from path, to ensure that subsequent
instances are correctly classified as on-pro-arg or not (line 32). It then returns
can-sols (line 33).

Correctness of modifiedVreeswijk06(. . .) — a sketch

Now let us informally show that the algorithm is correct. We first show that an ex-
ternal call to the algorithm returns only defence-sets around the specified argument,
and then that it returns all such sets.

modifiedVreeswijk06(. . .) returns only defence-sets

Admissibility requires of a set of arguments (i) that it is conflict-free and (ii) that it is
acceptable with respect to itself — i.e. that it attacks every argument which attacks
any of its members. Therefore to show that an external call to the algorithm returns
only defence-sets of the specified argument, we must show that every returned set
(i) contains the specified argument; (ii) is conflict-free; (iii) is acceptable with respect
to itself; and (iv) is minimal among the sets satisfying (i)–(iii). For the sake of clarity
and brevity, we henceforth refer to instances of the algorithm which are on-opp-arg
and instances which are on-pro-arg as opp-instances and pro-instances respectively.

It is straightforward to show that every set returned by the algorithm contains
the specified argument. Every instance of the algorithm returns can-sols ; every
pro-instance adds current-arg to every member of can-sols ; and nowhere does the
algorithm reduce any set of arguments. In an externally-called instance of the al-
gorithm, current-arg is the specified argument, and externally-called instances are
pro-instances. Therefore every set of arguments returned by an externally-called
instance contains the specified argument.

It is also straightforward to show that every set returned by the algorithm is
conflict-free. Three points to do with the expansion of sets of arguments are im-
portant — (i) that such expansion happens only in pro-instances; (ii) that the sets
expanded are invariably members of the set of candidate-solutions passed to the in-
stance; and (iii) that the manner of expansion is invariably merely the addition of the
argument that has been passed to the instance. If a pro-instance is the externally-
called instance, the set of candidate-solutions passed to it contains only ∅, which of
course remains conflict-free after the addition of any argument. If a pro-instance is
not the externally-called instance, it must have been called by an opp-instance; and
no opp-instance passes to a pro-instance a set of arguments and an argument, such
that adding the latter to the former produces a non-conflict-free set. Therefore in
no instance of the algorithm is a set of arguments expanded to form a non-conflict-
free set. Furthermore, no instance of the algorithm creates a set of arguments anew
(i.e. not by expanding an existing set). Therefore sets of arguments which are not
conflict-free nowhere feature, and hence cannot be returned.

5

Now let us consider acceptability. We show by contradiction that every set of argu-
ments returned by an externally-called instance of the algorithm is acceptable with
respect to itself. Let S be a set of arguments which is not acceptable with respect to
itself, on account of (i) including an argument undefended-arg, and (ii) not attacking
an argument attacker which attacks undefended-arg. Suppose now that S is among
the argument-sets returned by an externally-called instance of the algorithm.

As we have seen, the externally-called instance of the algorithm begins with no
sets of arguments except the empty set, and sets of arguments are expanded only
in pro-instances, and only by the addition of the argument which was passed to
the pro-instance. Therefore were the algorithm to return S, there must have been
some pro-instance instpro, which had among its parameters (i) undefended-arg and
(ii) a set of candidate-solutions which included a candidate-solution S ′ such that
S ′ ⊂ S. Since S ′ ⊂ S, (S ′ ∪ {undefended-arg}) does not defend undefended-arg
against attacker.

Now, there might be multiple arguments attacking undefended-arg, and instpro

recurses for each, each opp-instance being passed those members of can-sols which
do not defend themselves against the attacker, and can-sols being redefined after
each opp-instance has returned as the minimal members of the union of (i) that
instance’s output and (ii) the candidate-solutions which were found to defend them-
selves against the attacker. However, whichever order in which the attackers of
undefended-arg are thereby dealt with, when the algorithm recurses for attacker
the opp-instance instattacker will be passed those members of can-sols which do
not defend themselves against attacker. instattacker is an opp-instance, so for any
candidate-solution returned by instattacker, that candidate-solution must have been
returned by a pro-instance, such that the argument passed to it attacks attacker.
Now, in the course of that pro-instance every candidate-solution which was passed
to it must have been expanded by the addition of the argument that was passed to
it — i.e. the argument attacking attacker. Nowhere does the algorithm reduce any
candidate-solution; therefore every candidate-solution returned by instattacker con-
tains an argument attacking attacker. Therefore when instattacker returns and instpro

then redefines can-sols as the minimal members of the union of (i) the output of
instattacker and (ii) those candidate-solutions which were found to defend themselves
against attacker, can-sols contains no candidate-solution which does not defend it-
self against attacker. Therefore, again since the algorithm nowhere reduces any
candidate-solution, instpro cannot return any candidate-solution which does not de-
fend itself against attacker. Therefore, in sum, if undefended-arg is added to any
candidate solution, some attacker of attacker must also be added to that same can-
didate solution, if the externally-called instance is to return the candidate-solution.
Therefore S cannot be among the argument-sets returned by the externally-called
instance of the algorithm.

Let us finally consider minimality. Every set returned by the algorithm is minimal,
because no instance returns any set of candidate-solutions which has not first been
filtered to remove the non-minimal members — such filtering is inevitably the last
thing to happen in the recursive stage (lines 23 and 28), and no sets of arguments
are expanded or created thereafter.

6

modifiedVreeswijk06(. . .) returns all defence-sets

Having shown that an external call to the algorithm generates only defence-sets for
the specified argument, let us now show that it generates all of those defence-sets.
To do so, we must show that every defence-set around target-arg is both found and
retained — i.e. that in some instance the set is constructed, and that the externally-
called instance returns the set. We consider these matters in turn for an arbitrary
such set Sdefence

target-arg.

That Sdefence
target-arg will be found follows from the manner in which the algorithm

recurses and the manner in which it expands candidate-solutions. Let us show
this by tracking its construction, referring to its partial, in-progress versions as
cs ′ throughout. In the externally-called instance, the set of candidate-solutions
is initially {∅}, and will become {{target-arg}} before any recursion. So cs ′ =
{target-arg}. If and only if target-arg is attacked does the algorithm recurse. Suppose
that b is among target-arg ’s attackers, and that the algorithm recurses first of all
for b; and suppose also that c attacks b and c ∈ Sdefence

target-arg. The admissibility of
Sdefence

target-arg implies that {target-arg,c} is conflict-free, so when the instance recurses
for b, the called-instance will recurse for c — i.e. passing c and {target-arg} to the
called instance, which we term instc. In instc cs ′ is expanded to form {target-arg,c}.
If cs ′ defends c against all attackers, instc returns {cs ′}. If it does not, let d be the
first uncountered attacker for which recursion occurs. The process is then repeated,
except that this time d takes the place of b, and an argument e in Sdefence

target-arg which
attacks d takes the place of c. And so on, until cs ′ is augmented by an argument k
which is adequately defended by (cs ′∪{k}). This augmentation occurs, of course, in
a pro-instance; that instance returns to its calling instance a set which includes cs ′.
Now, that calling-instance might then recurse many more times, for alternative
defenders against the attack which motivated the inclusion of k ; however, cs ′ is in
any case preserved unchanged in accumulated-can-sols, to be returned to the calling
instance, unless a proper subset of it is added to accumulated-can-sols. Assume for
the moment that no such subset is added, and that cs ′ is returned to the calling
instance. The calling instance is of course a pro-instance, the pro-arg in question
being in cs ′. That instance might then discard cs ′ as non-minimal; again, assume
for the moment that it does not. If there remain attackers of pro-arg which have not
been dealt with, cs ′ will be expanded by another series of instances, as described
above. Otherwise cs ′ is returned to the calling instance, which returns it to the
previous pro-instance, again assuming that it is not discarded as non-minimal. And
so on, until Sdefence

target-arg has been found.

We have so far assumed that the construction of Sdefence
target-arg proceeds straightfor-

wardly — i.e. that none of the in-progress versions denoted by cs ′ is discarded as
non-minimal. Let us now show that even if cs ′ — that is, an in-progress version
of Sdefence

target-arg — is ever discarded, Sdefence
target-arg must be discovered nonetheless, and re-

turned by the externally-called instance. This fact follows from (i) the manner in
which the algorithm discards candidate-solutions; and (ii) the fact that it returns
only defence-sets of target-arg ; and (iii) the fact that the algorithm invariably ter-
minates.

7

In pro-instances, candidate-solutions are discarded only if they are non-minimal.
In opp-instances, candidate-solutions might be discarded in one of two ways. Either
(a) the candidate-solution is one of those which was passed to the instance, and
there is no attacker of the argument which was passed to the instance which is not
in conflict with the candidate-solution; or (b) the candidate-solution is one which
was returned by one of the called pro-instances, and it turns out to be non-minimal
in the union of the outputs of the called instances. Therefore whenever a candidate-
solution is discarded, a candidate-solution subsumed by it is necessarily retained —
that is, returned to the calling instance or passed to a called instance — unless it is
discarded in manner (a) in an opp-instance. Now, (a) cannot be true of cs ′, because
cs ′ is a subset of an admissible set.

Therefore if cs ′ is ever discarded, the instance in which it is discarded returns or
passes some subset cs ′′ to another instance; and if cs ′′ was then discarded in that
other instance, then some subset of it would be returned or passed. . . and so on,
until we reach a subset which is not discarded. What becomes of it? Because the
algorithm returns only defence-sets of target-arg, it cannot be returned, since it is a
proper subset of Sdefence

target-arg, and hence inadmissible. Therefore either it is expanded
to form Sdefence

target-arg, or the algorithm does not terminate.

Let us therefore show that the algorithm invariably terminates. The algorithm
might fail to terminate only if the recursion might be either infinitely broad or
infinitely deep — i.e. if it might be that any instance either recursed infinitely
or called one instance, which called another, which called another. . . ad infinitum.
Recursion is finite in terms of breadth, for each instance may recurse n times at most,
where n is the number of arguments attacking the argument which was passed to
it; and no argument has infinitely many attackers. Recursion is finite also in terms
of depth. Note first that such a series of instances as sketched must be alternately
on-opp-arg and on-pro-arg. In every pro-instance, the candidate-solutions which
are passed to that instance are augmented with the argument which was passed to
the instance; it passes a subset of those candidate-solutions to the next instance
in the series. That opp-instance does not expand the candidate-solutions passed
to it, but nor does it reduce them — it simply passes a subset of them to the
next (pro-) instance in the series. Therefore in such a series of instances as was
sketched, increasingly large candidate-solutions are passed to the instances as the
series progresses. Therefore such a series of instances cannot continue ad infinitum,
as there are only finitely many arguments. Therefore recursion is finite in terms of
depth as well as breadth, and the algorithm invariably terminates.

References

[1] G. A. W. Vreeswijk. An algorithm to compute minimally grounded and admissi-
ble defence sets in argument systems. In P. E. Dunne and T. J. M. Bench-Capon,
editors, Proceedings of the 1st International Conference on Computational Mod-
els of Argument (COMMA’06), pages 109–120, 2006.

8

