
The Knowledge Engineering Review, Vol. 00:0, 1–25. c© 2007, Cambridge University Press
DOI: 10.1017/S000000000000000 Printed in the United Kingdom

Towards an Argument Interchange Format

Carlos Chesñevar,1 Jarred McGinnis,2 Sanjay Modgil,3 Iyad Rahwan,4,2 Chris

Reed,5 Guillermo Simari,5 Matthew South,3 Gerard Vreeswijk,8 Steven Willmott9

1Universitat de Lleida, Catalunya, Spain
2University of Edinburgh, UK
3Cancer Research UK, UK
4British University in Dubai, UAE
5University of Dundee, UK
6Universidad Nacional del Sur, Argentina
7Universiteit Utrecht, The Netherlands
8Universitat Politècnica de Catalunya, Catalunya, Spain

Abstract

The theory of argumentation is a rich, interdisciplinary area of research straddling the fields of

artificial intelligence, philosophy, communication studies, linguistics, and psychology. In the last

years, significant progress has been made in understanding the theoretical properties of different

argumentation logics. However, one major barrier to the development and practical deployment

of argumentation systems is the lack of a shared, agreed notation or “interchange format” for

argumentation and arguments. This article describes a draft specification for an Argument

Interchange Format (AIF) intended for representation and exchange of data between various

argumentation tools and agent-based applications. It represents a consensus ‘abstract model’

established by researchers across fields of argumentation, artificial intelligence and multi-agent

systems.1 In its current form, this specification is intended as a starting point for further discussion

and elaboration by the community, rather than an attempt at a definitive, all encompassing model.

However, to demonstrate proof of concept, a use case scenario is briefly described. Moreover, three

concrete realisations or ‘reifications’ of the abstract model are illustrated.

1 Introduction and Background

The theory of argumentation is a rich, interdisciplinary area of research straddling the

fields of philosophy, communication studies, linguistics, and psychology. Its techniques and

results have found a wide range of applications in both theoretical and practical branches of

artificial intelligence and computer science as outlined in various recent reviews (Carbogim,

et al. 2000, Chesñevar, et al. 2000, Prakken & Vreeswijk 2002, Rahwan, et al. 2003, Reed &

Norman 2004). These applications involve a wide range of areas such as specifying semantics

for logic programs (Dung 1995), natural language processing (Elhadad 1995), recommender

systems technology (Chesñevar, et al. 2006), legal reasoning (Bench-Capon 1997), decision-

support for multi-party human decision-making (Gordon & Karacapilidis 1997) conflict resolu-

tion (Sycara 1992), as well as recent applications in multi-agent systems (Rahwan 2005, Rahwan,

et al. 2005, Parsons, et al. 2006) in both the autonomous reasoning of individual agents (Kakas &

1This article started life as a skeleton for contributions from participants at an AgentLink Technical
Forum Group meeting in Budapest in September 2005, receiving additional input from third parties.
The results were subsequently improved and added to by online discussion to form a more substantial
consensus.

2 c. chesñevar, j. mcginnis, s. modgil, i. rahwan, c. reed, g. simari, m.
south, g. vreeswijk, s. willmott

Moraitis 2003) (and particularly defeasible reasoning (Garćıa & Simari 2004)), and the structure

of interactions between them (McBurney & Parsons 2002).

While significant progress has been made in understanding the theoretical properties of

different argumentation logics (Prakken & Vreeswijk 2002) and in specifying argumentation

dialogues (McBurney & Parsons 2003), there remain major barriers to the development and

practical deployment of argumentation systems. One of these barriers is the lack of a shared,

agreed notation or “interchange format” for argumentation and arguments. In the last years a

number of different argument mark-up languages have been proposed in the context of tools

developed for argument visualisation and construction (see (Kirschner, et al. 2003) for a review).

Thus, for example, the Assurance and Safety Case Environment (ASCE)2 is a graphical and

narrative authoring tool for developing and managing assurance cases, safety cases and other

complex project documentation. ASCE relies on an ontology for arguments about safety based

on claims, arguments and evidence (Emmet & Cleland 2002). Another mark-up language was

developed for Compendium,3 a semantic hypertext concept mapping tool. The Compendium

argument ontology enables constructing Issue Based Information System (IBIS) networks, in

which nodes represent issues, positions and arguments (Conklin & Begeman 1988).

The analysis and study of human argument has also prompted the development of specialised

argument mark-up languages and tools. Two particularly relevant developments in this direction

are ClaiMaker (Shum, et al. 2006) and AML (Reed & Rowe 2004). ClaiMaker and related

technologies (Shum et al. 2006) provide a set of tools for individuals or distributed communities

to publish and contest ideas and arguments, as is required in contested domains such as

research literatures, intelligence analysis, or public debate. This system is based on the ScholOnto

ontology (Shum, et al. 2000), which can express a number of basic reasoning schemes (causality,

support) and relationships between concepts found in scholarly discourse (e.g. similarity of ideas,

taxonomies of concepts, etc.). The argument-markup language (AML) used by the Araucaria

system4 is an XML-based language (Reed & Rowe 2004) designed for the markup of analysed

human argument. The syntax of AML is specified in a Document Type Definition (DTD) which

imposes structural constraints on the form of valid AML documents. AML was primarily produced

for use in the Araucaria tool, though has more recently been adopted elsewhere.

These various attempts at providing argument mark-up languages share two major limitations.

Firstly, each particular language is designed for use with a specific tool (usually for the purpose

of facilitating argument visualisation) rather than for facilitating inter-operability of arguments

among a variety of tools. As a consequence, the semantics of arguments specified using these

languages is tightly coupled with particular schemes to be interpreted in a specific tool and

according to a specific underlying theory. Thus, for example, arguments in the Compendium

concept mapping tool are to be interpreted in relation to a rigorous theory of issue-based

information systems. Clearly, in order to enable true interoperability of arguments and argument

structures we need an argument description language that can be extended beyond a particular

argumentation theory, enabling us to accommodate a variety of argumentation theories and

schemes. Another limitation of the above argument mark-up languages is that they are primarily

aimed at enabling users to structure arguments through diagrammatic linkage of natural language

sentences (Kirschner et al. 2003). Hence, these mark-up languages are not designed to process

formal logical statements such as those used within multi-agent systems. For example, AML

imposes structural limitations on legal arguments, but provides no semantic model. Such a

semantic model is a natural requirement in order to enable the automatic processing of argument

structures by software agents.

2http://www.adelard.co.uk/software/asce/
3http://www.compendiuminstitute.org/tools/compendium.htm
4http://araucaria.computing.dundee.ac.uk/

2 OVERALL APPROACH 3

In order to address these limitations, a group of researchers interested in ‘argument and

computation’ gathered for a workshop5 whose aim was to sketch an Argumentation Interchange

Format (AIF) which consolidates –where possible– the work that has already been done in

argumentation mark-up languages and multi-agent system frameworks. The main aims of the

AIF were:

• to facilitate the development of (closed or open) multi-agent systems capable of

argumentation-based reasoning and interaction using a shared formalism;

• to facilitate data interchange among tools for argument manipulation and argument visual-

ization.

This article describes and analyzes the main components of a draft specification for AIF. It

must be remarked that AIF as it stands represents a consensus ‘abstract model’ established

by researchers across fields of argumentation, artificial intelligence and multi-agent systems. In

its current form, this specification is intended as a starting point for further discussion and

elaboration by the community, rather than an attempt at a definitive, all encompassing model.

In order to demonstrate the power of the proposed approach, we describe use cases which show

how AIF fits into some argument-based tools and applications. We also illustrate a number of

concrete realisations or ‘reifications’ of the proposed abstract model.

The rest of this article is structured as follows. In Section 2 we describe our overall approach

to the development of an Argument Interchange Format. The core abstract AIF model describing

basic concepts and their relationships is described in Section 3. Then, in Section 4 we describe use

cases illustrating how AIF fits into some argument-based tools and applications in the context of

the ASPIC project.6 Section 5 then describes three particular reifications/syntaxes instantiating

the model described in Section 3. Finally, Section 6 presents the main conclusions obtained and

discusses some open issues.

2 Overall Approach

An Argumentation Interchange Format, like any other data representation, requires a well defined

syntax and semantics. The syntax is required as a concrete representation of statements relating

to arguments, and the semantics conveys the meaning of statements made using the syntax.

However, beyond this basic requirement, there are a wide range of approaches which could be

taken for defining both syntax and semantics. In particular, semantics may be explicit (using

some previous formal notation with its own syntax and semantics) or implicit (hard coded into

a piece of software which subsequently behaves in a given way for each combination of inputs),

machine readable or targeted at a human audience (written notes for human consumption),

formal or informal, etc. Further questions arise as to whether there should be one single AIF

format defined, whether variations should be allowed for, how extensions should be dealt with,

etc. Given this range of possibilities the approach taken in this document adheres to the following

overall principles:

• Machine readable syntax : AIF representations are specifically targeted at machine read/write

operations rather than human level documentation. While using formats which are human

readable is desirable (e.g., for debugging purposes), the primary aim of the format is data

interchange between software systems.

• Explicit and (where possible) machine processable semantics: The semantics of AIF state-

ments are to be stated explicitly in specification documents, so that such statements can be

implemented by multiple tool/system providers. Secondly, where possible, the nature of the

semantic definition should enable the implementation of processing tools such as reasoners

(e.g., using some existing logical framework).

5AgentLink Technical Forum Group meeting, Budapest, Hungary, September 2005.
6http://www.argumentation.org

4 c. chesñevar, j. mcginnis, s. modgil, i. rahwan, c. reed, g. simari, m.
south, g. vreeswijk, s. willmott

• Unified abstract model, multiple reifications: the AIF should be defined in terms of: 1) an

abstract model characterising the concepts which could be expressed in an AIF and their

relationship to one other, and 2) a set of concrete reifications/concrete syntaxes which

instantiate these concepts in a particular syntactic formalism (such as XML, Lisp-like S-

expressions, etc.). That way, interoperability may still be facilitated by similarities at the

abstract level even when dealing with different computational environments with particular

syntactic requirements.

• Core concepts, multiple extensions: recognizing that different applications may require

statements about a wide array of different argumentation related concepts, the AIF will

be structured as a set of core concepts (i.e., those likely to be common to many applications)

and extensions (those which are specialist to particular domains or types of applications). It

is anticipated that: 1) the core will evolve over time as consensus changes on what is central

and applications generate experience, and that 2) extensions could be generated by any user

of the AIF and, if they turn out to be particularly useful, would be shared amongst large

groups of users (potentially also being merged into the core).

3 Abstract Model / Core Ontology

The foundation for the AIF model is given by a set of definitions for high-level concepts related

to argumentation which may need to be represented in the proposed format. These concepts are

gathered into three main groups:

1. Arguments and Argument Networks: the core ontology for argument entities and relations

between argument entities with the purpose of reification in an AIF (see Section 3.2).

2. Communication: the core ontology for items which relate to the interchange of arguments

between two or more participants in an environment, including locutions and protocols (see

Section 3.4).

3. Context : the core ontology for items associated with environments in which argumentation

may take place. These include participants in argument exchanges (agents), theories con-

tained in the environment that are used for argumentation, and other aspects which may

affect the meaning of arguments/communication of arguments (see Section 3.5).

In the next subsections an overview of the above concepts is given. Definitions are drawn from

existing theories when possible, but may diverge where alignment among theories is needed. The

relationships between these groups of concepts are shown in Fig. 1.

3.1 The Notion of Argument

Before proceeding with these definitions, it is worth noting that we will not take a position on

the precise definition of the notion of “argument” itself, even though later sections do provide

structures for describing argument. The reason for this is that initially we found it too difficult

to select a single definition acceptable to all. We contend that progress on such a definition might

be better made once some consensus is reached on the necessary lower level concepts. A useful

starting point for understanding philosophical notions of argument can however be found in David

Hitchcock’s input to the original AIF meeting.7

3.2 Arguments / Argument Networks

The following section defines the top level concepts to be considered for an ontology of arguments

and relationships between arguments.

7http://www.x-opennet.org/aif/Inputs/aif2005_david_hitchcock_1.pdf

3 ABSTRACT MODEL / CORE ONTOLOGY 5

Refers-to / Manipulates
Communication
(Locutions/
Protocols)

Argument
Networks
(Arguments/
Relations)

Context
(Participants/
Theory)

Drives

Manipulates

Constrains

Constrains

Influences

Figure 1 Overview diagram of main groups of concepts defined by the AIF Core Ontology

3.2.1 Concepts and Relations:

The starting point of this section is the assumption that argument entities can be represented

as nodes in a directed graph (di-graph). This di-graph is informally called an argument network

(AN). An example of an AN is displayed in Fig. 3. The rationale for not restricting ourselves to

directed acyclic graphs (DAGs) or even trees is that argumentation formalisms vary to a great

extent. A number of formalisms allow for cycles where others forbid them explicitly. One of our

basic assumptions is that the core ontology should cater for these differences, and should be able

to capture extreme cases.

3.2.2 Nodes

There are two kinds of nodes, namely information nodes (I-nodes) and scheme application nodes

or scheme nodes (S-nodes) for short (see Fig. 2).

Whereas I-nodes relate to content and represent claims that depend on the domain of discourse,

S-nodes are applications of schemes. Such schemes may be considered as domain-independent

patterns of reasoning (which resemble rules of inference in deductive logics but broadened to

include non-deductive logics that are not restricted to classical logical inference). The present

ontology deals with three different types of schemes, namely inference schemes, preference

schemes and conflict schemes. Potentially, other scheme types could exist, such as evaluation

schemes and scenario schemes, which will not be addressed further here. Notice that presumptive

argumentation schemes, such as those presented by Walton (Walton 1996), constitute a subset

of the set of possible inference schemes.

If a scheme application node is an application of an inference scheme it is called a rule

of inference application node (RA-node). If a scheme application node is an application of a

preference scheme it is called a preference application node (PA-node). Similarly, if an S-node is

an application of a conflict scheme, it is called a conflict application node (CA-node). Informally,

RA-nodes can be seen as applications of (possibly non-deductive) rules of inference, whereas CA-

nodes can be seen as applications of criteria (declarative specifications) defining conflict, which

may be logical or non-logical. PA-nodes, on the other hand, are applications of (possibly abstract)

criteria of preference among evaluated nodes.

6 c. chesñevar, j. mcginnis, s. modgil, i. rahwan, c. reed, g. simari, m.
south, g. vreeswijk, s. willmott

Figure 2 Concepts and relations for an ontology of arguments

3.2.3 Node Attributes

Nodes may possess different attributes such as title, text, creator, type (e.g. decision, action,

goal, belief), creation date, evaluation (or strength, or conditional evaluation table), acceptability,

and polarity (e.g. values such as “pro” or “con”). These attributes may vary and are not part of

the core ontology. The term “conditional evaluation table” is inspired by its Bayesian analogue

named “conditional probability table” (CPT), and may be used to capture information useful

in evaluating individual arguments or groups of arguments. Most attributes are proper, that is,

essential to the node itself, while others are derived. It is imaginable that a derived attribute such

as acceptability may be obtained from node-specific attributes through calculation. In this case,

the acceptability of an argument may be obtained from evaluation through mechanical inference.8

3.2.4 Edges

In the context of a graph representing argument-based concepts and relations, a node A is said

to support node B if and only if there is an edge running from A to B. Edges do not need to be

explicitly marked, labelled, or otherwise supplied with semantic pointers. If desired, edge types

can be inferred from the nodes they connect. Basically there are two types of edges, namely

scheme edges and data edges. Scheme edges emanate from S-nodes and are meant to support

conclusions that follow from the S-node. These conclusions may either be I-nodes or S-nodes.

Data edges emanating from I-nodes, on the other hand, necessarily end in S-nodes, and are

meant to supply data, or information to scheme applications. In this way, we can speak of I-to-S

8There are voices that advocate dropping derived node attributes altogether, for different algorithms may
assign different values for such attributes to arguments within one and the same argument network.

3 ABSTRACT MODEL / CORE ONTOLOGY 7

to I-node to RA-node to PA-node to CA-node

from I-node I-node data used
in applying an
inference

I-node data used in
applying a
preference

I-node data in conflict
with information in node
supported by CA-node

from RA-node inferring a
conclusion in the
form of a claim

inferring a
conclusion in the
form of an
inference
application

inferring a
conclusion in the
form of a preference
application

inferring a conclusion in
the form of a conflict def-
inition application

from PA-node applying a
preference over
data in I-node

applying a
preference over
inference
application in
RA-node

meta-preferences:
applying a
preference over
preference
application in
supported PA-node

preference application in
supporting PA-node in
conflict with preference
application in PA-node
supported by CA-node

from CA-node applying conflict
definition to data
in I-node

applying conflict
definition to
inference
application in
RA-node

applying conflict
definition to
preference
application in
PA-node

showing a conflict holds
between a conflict defini-
tion and some other piece
of information

Table 1 Semantics of support for node-to-node relationships in an argument network

edges (“information,” or “data” supplying edges), S-to-I edges (“conclusion” edges) and S-to-S

edges (“warrant” edges).

Table 1 summarises the relations associated with the semantics of support. Notice that I-to-I

edges are forbidden, because I-nodes cannot be connected without an explanation for why that

connection is being made. There is always a scheme, justification, inference, or rationale behind

a relation between two or more I-nodes that is captured in some form of S-node. Moreover, only

I-nodes can have zero incoming edges, as all S-nodes relate two or more components (for RA-

nodes, at least one antecedent is used to support at least one conclusion; for PA-nodes, at least

one alternative is preferred to at least one other; and for CA-nodes, at least one claim is in conflict

with at least one other).

Some further explanation is required with regard to S-to-S edges. These allow us to represent

what might more properly be considered as modes of ‘meta-reasoning’. For example, RA-to-

RA and RA-to-PA edges might indicate some kind of meta-justification for application of

an inference rule or particular criterion for defining preferences. Some instances of Toulmin

backings (Toulmin 1958), for example, could most accurately be captured through the use of

RA-to-RA links. An RA-to-CA node could encode some rationale for why two I-nodes are in

conflict. For example, that each I-node specifies two alternative actions for realising a goal (in

which case arguments supporting each action are considered to be in conflict). Of course, once

we consider these forms of meta-reasoning, then this paves the way for ‘meta-argumentation’ in

that two preference applications might be in conflict (PA-to-CA and CA-to-PA), requiring the

definition of a preference between preference applications (PA-to-PA) (Modgil 2006).

To distinguish scheme edges from data edges in diagrams, edges that emanate from S-nodes

may be supplied with a closed arrowhead at the end, while edges that emanate from I-nodes may

be supplied with an open arrowhead at the end. Edges may be further classified into different

categories, such as support edges (that are associated or “coloured” by the scheme of the S-node

they are connected to; for S-to-S edges, the nodes that they emanate from), inference edges (those

edges that are connected to a RA-node, shown in black in Fig. 3), and attack edges (edges that

are connected to a PA-node, shown in red in Fig. 3).9 Marking edges and applying arrowheads

to edges is not part of the ontology but only meant to help human beings in its interpretation.

9Note that in the colour printed version of the document different colours are visible for edges for clarity
– however, they are not essential to interpretation.

8 c. chesñevar, j. mcginnis, s. modgil, i. rahwan, c. reed, g. simari, m.
south, g. vreeswijk, s. willmott

Figure 3 Sample argument network.

3.2.5 Derived concepts
Concepts from an extension ontology, in particular concepts such as rebut, undercut, attack, defeat

and defend can in principle be derived from the concepts in the diagram that is displayed in Fig. 2.

Thus, an argument qualified with derived concepts can in principle be described in terms of basic

concepts in a mechanical manner. Nevertheless, such derived concepts may still have an important

place that should be respected by their inclusion in a suitable extension ontology (see further

discussions in Section 6).

3.3 Examples

This section presents three examples: an abstract example that shows most of the features of the

ontology, a translation of Toulmin’s scheme, and a simple concrete example.

3.3.1 Abstract example of an argument network
An abstract example of an argument network is displayed in Fig. 3. This network contains

eleven I-nodes, namely I-node1,. . . , I-node11 and six rule application nodes, namely RA-node1,

RA-node2, RA-node3, RA-node4, PA-node1, and PA-node2. This abstract example is meant to

demonstrate the flexibility of the core ontology, stretching the limits of the model. Obviously,

many existing argument formalisms would not support the constructions shown in this example.

Some observations that can be drawn from the diagram are:

1. The main claim is supported by two inference applications, two preference applications, and

one conflict application.

2. I-node4 shows that our model allows for multiple node references. Thus, nodes may be

referred to more than once. Consequently, argument networks are not restricted to tree-

like structures as those used for modelling argument games or dialectical proof procedures

(Amgoud & Cayrol 2002).

3. The two inference applications

3 ABSTRACT MODEL / CORE ONTOLOGY 9

Figure 4 Toulmin scheme conceptualised as an argument network

I-node2, I-node3−(RA-node1)→ I-node1 (main claim)

I-node1, I-node6, I-node7−(RA-node3)→ I-node2

show that in theory, cycles may occur.

4. CA-node1 links and supports both I-node1 and I-node5 reflecting the symmetrical nature of

the conflict (commonly known as a rebut attack in the literature). Also, PA-node2 emanating

from I-node5 and supporting I-node1 indicates a preference for the former over the latter.

One might therefore obtain the derived relationship that I-node5 defeats I-node1, given

that it conflicts with (attacks) and is preferred to I-node1.

5. RA-node1 is asymmetrically attacked by I-node12 via CA-node2. An attack on an inference

application is often referred to as an undercut (Pollock 1987). On the other hand a CA-node

may also asymmetrically support (i.e., attack) an I-node. Such attacks are also referred to

as undercuts in the literature (e.g., in (Prakken & Sartor 1997) an argument A undercuts

another argument A′ if A proves (claims) what was assumed unprovable by A′).

3.3.2 Argumentation à la Toulmin: an example
The scheme presented by Stephen Toulmin (Toulmin 1958) has been very influential in the

computational modelling of argument. In its simplified form, Toulmin’s scheme consists of six

essential elements, namely data (D), warrant (W), backing (B), qualifier (Q), rebuttal (R) and

claim (C). These elements are usually depicted as follows:

D −→Q, C

| |

since W unless R

|

B

A (somewhat liberal) translation of this scheme into our AIF format is displayed in Fig. 4.

The shadow-encircled nodes together relate to the original backing B. Notice that in Fig. 4,

R (rebuttal) attacks C (claim) rather than W (warrant). It is not clear from “The Uses of

Argument” (Toulmin 1958) whether R should attack C or W . In our approach to AIF we have

chosen the latter. Nevertheless, R can reasonably be taken to attack C, to support not-C, to

attack W , or to attack an implicit warrant. In this particular case our AIF approach does not

advocate a specific mechanism for such translation, but merely that any of those translations

should be representable in the present ontology.

10 c. chesñevar, j. mcginnis, s. modgil, i. rahwan, c. reed, g. simari, m.
south, g. vreeswijk, s. willmott

3.3.3 A concrete and simple example
In Fig. 5 we show a concrete and simple example of an argument network for handling the

well-known AI example of modelling the flying abilities of birds and penguins, and reasoning

about whether a particular penguin opus can fly. In this case there are two arguments, one for

fly(opus) and one for ~fly(opus), where “~” stands for negation.

Figure 5 Modelling arguments “pro” and “con” flying abilities in birds: a concrete example of an
argument network.

The argument for ~flies(opus) is composed of one scheme-application, namely Modus Ponens

(MP). A simplistic version of MP reads as follows: if there are two information nodes A(x) and

A(x)->B(x) then conclusively infer B(x). The argument for flies(opus) is composed of one

scheme-application, namely defeasible Modus Ponens (dMP). A simplistic version of dMP reads

as follows: If there are two information nodes A(x) and A(x)-(qualifier)->B(x) then defeasibly

infer B(x). The conflicting nodes flies(opus) and ~flies(opus) are related by an intermediate

CA-node linking the conflicting nodes in both directions. The argument for ~flies(opus) is

conclusive and therefore preferred to (and so defeats) the argument for flies(opus). Hence the

intermediate PA-node linking ~flies(opus) to flies(opus).

3.4 Communication: Locution / Protocols

The second group of concepts correspond to those which concern communication in the context

of argumentation, for example, concepts which capture:

• The utterance of a statement by an agent containing an argument or argument network.

• A sequence of legal statements making reference to arguments/argument networks which

could be made by a set of agents in order to make a decision or reach some other goal.

In turn, as with arguments/argument networks, communication also takes place in a context,

elements of which may affect the interpretation of statements (such as references to the

participants in a dialogue, the ontologies applying, the semantic models adopted, etc.). In this

setting two main elements can be identified: locutions, which are individual words, phrases or

expressions uttered by an agent, and interaction protocols, which are defined by sequences of

locutions involving one or more (usually at least two) agents and normally designed to achieve a

specific goal (such as reaching an agreement or giving information). Although locutions provide

the basic building blocks of protocols, it is important to note that there are different “schools

of thought” on how the semantics for locutions and protocols should be defined in terms of one

another. One approach, such as FIPA ACL (FIPA 2001), holds that semantics are attributed

to individual locutions; and the semantics of a protocol are a compound of the semantics of

individual locutions. Another approach holds that the semantics of locutions vary depending on

3 ABSTRACT MODEL / CORE ONTOLOGY 11

their context (e.g. the commitments made thus far) and hence their place in a particular protocol

(Maudet & Chaib-draa 2003, Reed 2006).

3.4.1 Locutions
A rich literature exists on locutions of various types and their semantics. In terms of general

agent communication, languages such as FIPA-ACL and KQML define sets of general locutions

such as inform, request, query, tell and so on, each with an associated formal logical semantics.

However, while these languages may provide useful resources, it is also clear from more specific

argumentation literature that the types of locutions which occur frequently are more specific

than (or different to) those found in FIPA-ACL/KQML. Typical examples include assert, accept,

challenge, question, concede, and prefer.

While different authors use different labels for different locutions, there seem to often be

similarities in semantics. Work such as that by McBurney, Parsons and Wooldridge (McBurney,

et al. 2002), McBurney and Parsons (McBurney & Parsons 2002), Maudet and Chaib-draa

(Maudet & Chaib-draa 2002) and McBurney, Hitchcock, and Parsons (McBurney, et al. 2005)

provides a starting point for potentially determining a limited number of locutions which could

form the core of an AIF, others potentially being added as extensions. In this setting, an AIF

core ontology should include the generic notion of locution and distinguish a set of individual

locutions, formed by a set of subclasses of the class of locutions listed at the beginning of this

section. Locutions will have a number of associated properties. Based on the FIPA-ACL message

structure specification (FIPA 2001), such properties might include:10

• Sender : the agent uttering a locution (note that a distinction could also be made between

the sender who makes an utterance and the originator(s) – an agent or group of agents

responsible for generating the utterance.)

• Receiver or Receivers: Agents “hearing” an utterance (distinctions could be made between

intended recipients, those intentionally made aware of the message but not the intended

recipients and those who unintentionally become aware of an utterance).

• Ontologies: the ontologies which define elements of the content.

• Language: the content language used in the content part of the message (which should itself

have a formal semantics).

• Protocol : the protocol a locution is part of.

• Content : the object of the locution.

• Message management elements: items such as a message-identifier, a conversation-identifier,

in-reply-to field etc.

3.4.2 Interaction Protocols
It is possible to construct comprehensive standards of language usage for computational systems

that are widely used and relatively precise. This is the case for programming language standards

(such as Prolog, dialects of ADA, etc.). By contrast, in areas where standardisation of more

abstract concepts is required, consensus appears to be much harder to achieve, because abstract

concepts are difficult to pin down uniquely in a simple way. In this circumstance it is often

expedient to define precisely a core standard, containing only those elements essential to getting

the job done, and then allow extensions to this core in a controlled (but perhaps less precise) way.

An example of this form of standardisation is the Process Interchange Format (PIF) which is a

standard for describing processes. The PIF core contains a small number of very generic concepts

at the heart of that standard allows those with specific process description needs to meet their

own requirements by building on that core.

The definition of an interaction protocol language as part of an argument interchange format

provides a number of advantages. If the protocol language can be used for computation then it can

10Note that additionally one could add a slot for semantics which points to the defined formal semantics
for the locution.

12 c. chesñevar, j. mcginnis, s. modgil, i. rahwan, c. reed, g. simari, m.
south, g. vreeswijk, s. willmott

Model := {Clause, . . .}

Clause := Role :: Def

Role := a(Type, Id)

Def := Role |Message |Def then Def |Def or Def

Message := M ⇒ Role |M ⇒ Role← C |M ⇐ Role | C←M ⇐ Role

C := Constant | P (Term, . . .) | ¬C | C ∧ C | C ∨ C

Type := Term

Id := Constant | V ariable

M := Term

Term := Constant | V ariable | P (Term, . . .)

Constant := lower case character sequence or number

V ariable := upper case character sequence or number

Figure 6 LCC syntax

be effectively considered to be a programming standard, and history suggests that such standards

tend to be durable because they connect to practice (or fail to connect and then die cleanly).

If it is also declarative –and hence independent of current fashion in low level implementation

languages or basic communications protocols– then it can support formal analysis and verification

more readily. In addition, the use of a high level language arguably facilitates human readability.

For software engineers there is a natural notion of pattern in the design of protocols and this is

one approach to extension from a core protocol syntax to a (more interesting) set of extensions

via patterns.

The design and analysis of protocols is an area where traditionally computer science has helped

to supply standards. For example, Figure 6 defines the syntax of the Lightweight Coordination

Calculus (LCC) that uses a combination of traditional specification drawn from CCS and logic

programming (for details on LCC see (Robertson 2004)). An interaction model in LCC is a set of

clauses, each of which defines how a role in the interaction must be performed. Roles are described

by the type of role and an identifier for the individual agent undertaking that role. The definition

of performance of a role is constructed using combinations of the sequence operator (‘then’) or

choice operator (‘or’) to connect messages and changes of role. Messages are either outgoing to

another agent in a given role (‘⇒’) or incoming from another agent in a given role (‘⇐’). Message

input/output or change of role can be governed by a constraint defined using the normal logical

operators for conjunction, disjunction and negation. Notice that there is no commitment to the

system of logic through which constraints are solved –on the contrary, we would expect different

agents to operate different constraint solvers. Hence the standardisation in LCC is on the generic

language for describing interaction (only) and in this sense it is “core.” This standardisation has

also added benefit of having a style of description that is close to computation (which except for

the process operators is quite close to logic programming, where there already exists a successful

ISO standard).

3.5 Context: General Context/Participants/Theory

The third group of concepts in the ontology is that of elements which form the context in which

argumentation takes place. In keeping with the distinction already made between concepts for

communication and those for arguments / argument networks, concepts related to context may

also be usefully grouped into these two areas.

3.5.1 Communication Context

Here, context captures information relevant to argument-based dialogues. These include:

4 SOME USE CASES FOR AIF 13

• Participants: Characterising participants in argument-based dialogues may require references

to agents taking part in the dialogue, possibly including:

1. Participant ID: an identifier for a participant.

2. Participant role: the role of the participant in relation to the dialogue (e.g., pro, con,

persuader, buyer, seller, etc.). This may influence the way dialogue proceeds.

• Dialogue topic: This refers to the main issue under discussion (e.g., the question under

enquiry, or resource under negotiation).

• Dialogue type: a reference to the type of the dialogue (e.g., persuasion, negotiation (Walton

& Krabbe 1995)). This can be simply a name, or it can be a pointer to a more elaborate

dialogue typology.

• Background theory: This includes statements that participants agree upon (e.g., legal rules),

and which may be used to construct arguments within the dialogue.

• Commitment stores: This is a data structure that allows agents to add and remove

commitments during their dialogues (Hamblin 1970).

• Commitment rules: These are rules that specify how dialogue participants may modify the

content of commitment stores.

3.5.2 Argument Network Context
Here, context captures information relevant to the interpretation and processing of the argument

network.

• Argumentation theory rules: These are the rules that specify the way arguments are

constructed and interpreted. In a way, they represent the underlying formal argumentation

theory. These include:

1. Inference rules: These can be thought of as the specifications of the types of inference

application nodes that can be used in the argument network.

2. Conflict rules: These can be thought of as domain oriented declarative specifications of

the notion of conflict between two pieces of information.

3. Preference rules: Similarly, these can be thought of as the specifications of the types of

preference application nodes that can be used in the argument network.

• Background theory: This includes statements taken for granted (e.g., legal rules), and which

may be used to interpret or process arguments.

• Domain ontologies: Additionally, references to ontologies could be added to interpret

argument networks. For example, suppose an argument network represents claims and

justifications of the medical properties of a particular drug. In order to process these

arguments automatically, we may benefit from a specialised medical drug ontology while

interpreting these arguments.

4 Some Use Cases for AIF

In this section we describe different use cases which illustrate how our AIF proposal fits into

the broader landscape of tools and applications. Here we briefly present use case scenarios for

an XML reification recently developed for the ASPIC (Argumentation Service Platform with

Integrated Components) project.11 ASPIC aims at development of theoretical models for: a)

formal logic-based inference of argument; b) decision making based on arguments for and against

decision options; c) protocol based use of arguments so as to enrich purposive dialogues between

agents; d) integration of argumentation with machine learning. ASPIC also aims to transition

the aforementioned theoretical models to rigorously engineered generic software components, and

11ASPIC (IST-002307) is an Integrated Project of the European Union’s 6th Framework (www.
argumentation.org).

14 c. chesñevar, j. mcginnis, s. modgil, i. rahwan, c. reed, g. simari, m.
south, g. vreeswijk, s. willmott

provide a platform for application developers to integrate ASPIC components into stand-alone

applications and agent technologies.

Currently, within the ASPIC project an inference component is available12 based on a

prototype developed by Gerard Vreeswijk, that is intended for deployment in agent applications

and linkage to argument visualisation and editing tools. After describing the features of the

inference component, we then briefly describe some use cases illustrating linkage of the component

to visualisation and editing tools, and in so doing highlight requirements for a reification of the

AIF concepts described in Section 3.2.

4.1 The ASPIC Inference Component

The ASPIC inference component can conceptually be broken down into four Argumentation

Modules (ArMs) implementing:

1. Construction of tree structured arguments (ArgCon) from a knowledge base of facts and

strict and defeasible rules.

2. Argument valuation (ArgVal), currently based on the ‘weakest link’ principle, but intending

to offer a range of additional criteria for argument strength valuation (e.g., ‘last link’).

3. Definitions of argument interaction (ArgInt); in particular attack and defeat, where the

latter additionally accounts for the relative strengths of arguments.

4. Evaluation of the dialectical status of arguments (ArgStat) on the basis of the ways in which

they interact. In particular, the component implements algorithms based on argument games

for determining Dung acceptability under grounded and preferred semantics (Dung 1995).

4.2 Linking the Component to Argument Structuring and Visualisation Tools

A number of tools have been developed for construction and visualisation of arguments. These

include:

• Diagrammatic/Graphical argument structuring and visualization tools in professional,

research and pedagogic domains, focusing on the advantages argumentation brings to the

process of capturing human reasoning and debate (e.g., Araucaria (Reed & Rowe 2004) and

ArguMed (Verheij 1999), among others).

• Argument structuring and elicitation tools enabling users to incorporate their individual

knowledge via argumentation and support users by providing access to further domain content

for their arguments (e.g., Room 5 (Loui, et al. 1997))

• Systems aiming at machine-authoring effective arguments from knowledge bases which are

presented to the human user, via reasoned and persuasive explanations (e.g., PLAID (Bench-

Capon & Staniford 1995)).

• Collaborative decision making tools aiming at improving deliberation amongst multiple stake-

holders (e.g., (Conklin & Begeman 1988)). Essentially, these systems enable construction of

argument graphs through dialectical interaction amongst multiple users. These graphs embed

answers to the hows and whys behind the decisions arrived at.

A useful, unifying perspective on the above tools might be to describe them all as employing

argumentation as ‘a framework to support the user’s interaction with knowledge’. This involves:

1. knowledge elicitation from the user or knowledge retrieval from an external knowledge source

2. enhancing the explanatory power of knowledge through argument

3. guidance in construction of arguments

4. visualisation of arguments to aid understanding of the dialectical relationships between

arguments

12See http://aspic.acl.icnet.uk/ for more details.

4 SOME USE CASES FOR AIF 15

Figure 7 Linkage of Inference Component to external knowledge and Visualisation tool, illustrating
representational requirements for AIF

It is in each of these areas that deployment of the inference component can enhance existing

functionality and provide novel functionality. We describe some uses below, and in so doing

highlight requirements for a reification of the AIF.

• Two modes of elicitation of ‘atomic’ knowledge for argument construction are envisaged.

Firstly, retrieval from external knowledge repositories (arrow 1 in Fig. 7) including relational

and deductive databases, ontologies, web-accessible knowledge services, and other agents.

Visualisation and editing tools can be used to elicit entry of ‘atomic argumentation knowledge’

(the basic building blocks for argument construction) by a human user (arrow 2 in Fig.7).

In both cases, the input must be mapped to some standard representation format for atomic

argumentation knowledge which is subsequently communicated to the knowledge base (arrow

4 in Fig.7) from which ArgCon constructs arguments.

• Linkage of the ArgCon argumentation module to external knowledge bases (repositories)

will facilitate argument structuring of system explanations. For example, consider an expert

system that outputs an explanation (reasoning trace) of a successful Prolog query to a

Prolog knowledge base. Linkage of this knowledge base to the ArgCon module (arrow 3),

together with an appropriate mapping of the Prolog encoded knowledge to the common

representation format, will facilitate the appropriate rendering of the explanation as an

argument (arrow 5). Such rendering could be textual or also graphical (if linked to an

argument visualization tool).

• Linkage of the ArgCon argumentation module to visualisation tools can also serve to guide

users to construct valid arguments. For example, the ArgCon module can guide a user

16 c. chesñevar, j. mcginnis, s. modgil, i. rahwan, c. reed, g. simari, m.
south, g. vreeswijk, s. willmott

(arrow 5) to enter natural language sentences instantiating an informal presumptive argument

scheme (arrow 6) of the type described in (Walton 1996).

• The majority of existing tools lack mechanisms for automated evaluation of the dialectical

status of the interacting arguments authored by a user (e.g., none implement evaluation of

the Dung acceptability of arguments).

• Furthermore, consider that what gives visualisation high utility in an argumentation context

is that argumentation is inherently a process (Loui 1998) rather than an instant, static

picture. Users can enhance their interaction in this explicit and visual process by rendering

visualisation of the algorithmic proofs of acceptability of an argument. These proofs take the

form of an argument game between a proponent and opponent (e.g., see (Cayrol, et al. 2003))

that can be displayed visibly to a user as a tree (arrow 8) in which, as in the case of

a Dung framework, links between nodes (arguments) represent attacks. Again, this would

require mapping to some representation format that can be provided as an input to the

visualisation tool for rendering diagrammatically. Making transparent the workings of the

inference component can enable the user to interact, adopting the role of proponent or

opponent by submitting further arguments (as well as possibly information describing their

strength and interactions with other arguments) as indicated by arrow 6.

5 Reifications

In this section we describe three example reifications of the AIF concepts defined in Section 3.2.

By ‘reification,’ we mean a specific syntax, concretizing the AIF’s abstract definitions, which

can be unambiguously serialised and de-serialised for transmission between two communicating

participants/software tools exchanging arguments. Note that in general:

• More than one reification may exist.

• Two different reifications may not be interoperable. That is, serializers for one reification

may produce output which is not readable by parsers for another. The ontology specified

here aims to make translations between reifications possible.

• While individual reifications will each aim to capture the semantics of the concepts defined

in the AIF ontologies, they may also be influenced by the semantics of the encoding language

used. Hence minor semantic differences as well as syntactic differences may arise.

5.1 An example reification of the AIF in the ASPIC project

An important use case identified in Section 4.2 is the ability to communicate an evaluated

argument network that can then be unambiguously interpreted by the receiver. This use case also

subsumes other use cases such as the ability to represent a single argument tree and argument

interactions and has been implemented in the ASPIC prototype inference engine. The engine uses

a Prolog-like syntax for users to define strict and defeasible rules and beliefs and query those

rules and beliefs using several variations of Dung semantics. The main outputs of the prototype

engine are a human-readable diagram for the proof graph of the query and a machine consumable

XML document that represents the same graph with some additional context.

An example proof diagram is shown in Fig. 8. The proof shown is associated with the query,

‘born USA(herman)?’ and the following knowledge base:

born_USA(W) <- born_Pennsylvania (W).
speak_German(X) <- speak_PennDutch (X).
born_Pennsylvania (Y) <- speak_PennDutch (Y) 0.8.
~born_USA(Z) <- speak_German(Z) 0.9.

speak_PennDutch (herman).

5 REIFICATIONS 17

Figure 8 An example inference proof graph as generated by the ASPIC inference prototype. The
proof graph is produced after reasoning over the claim ‘is Herman born in the USA?’. In this instance,
using logical contradiction and defeat based on weakest link argument valuation, the claim is deemed
inadmissible.

In the prototype language, defeasibility is indicated with a weight (0,1), known as ‘degree of

belief’. The weight allows an ordering over rules and facts that can be used to compare arguments.

Thus the first two rules in the example knowledge base are strict and the last two defeasible,

with the fourth one being preferred to the third. The query shown is evaluated using preferred

credulous semantics (Dung 1995) and weakest link argument valuation. Other options include

grounded semantics, last link valuation, and restricted rebutting (Caminada & Amgoud 2005)

where an argument whose top rule is defeasible cannot rebut an argument whose top rule is strict.

Two XML schemas have been defined for ASPIC. The first is a general AIF schema that

captures and constrains the minimal schema required for defining an AIF argument graph in

XML. The second is a specific schema which extends the first schema with implementation details

from the inference engine. A diagram showing the design of the general schema is shown in Fig. 9.

It is anticipated that the majority of AIF generators will be able to inherit this schema and extend

it for their particular purposes, and this is what has been done for the case of the inference engine

schema. One constraint that is not expressible in the current draft of the general schema is that

I-nodes may not be directly connected to other I-nodes (via an edge). This constraint would have

to be explicitly checked by consumers of this schema, and not captured by schema validation

tools alone.

The particular schema for the inference engine extends the general schema in several ways.

The context is expanded with details of the generating engine, the knowledgebase, the query

options and the result of the query. Information nodes (I-nodes) are extended with a type (rule

or fact), a qualifier (degree of belief) and a status (defeated, defeater or admissible). The status

18 c. chesñevar, j. mcginnis, s. modgil, i. rahwan, c. reed, g. simari, m.
south, g. vreeswijk, s. willmott

Figure 9 Diagrammatic view of the AIF XML schema as drafted for ASPIC. The top level, aif element
has four ‘container’ sub-elements: context, S-nodes, I-nodes and edges. These are shown along with unique
key and keyref constraints in the left-hand side of the diagram. The right hand side of the diagram
indicates the design of the container sub-elements.

attribute allows individual argument trees to be identified because only the top arguments in an

argument tree are given a status by the engine. Finally, S-nodes are extended with details of the

substitution used to form the grounded claim of an argument in inference scheme application

nodes.

5.2 An example reification of the AIF in Araucaria

To demonstrate the breadth of the proposed AIF ontology, a second reification will be used to

show how our proposal can accommodate a mature extant representation scheme, viz. Araucaria’s

AML (Reed & Rowe 2004). One of the advantages of exploring the relationship between AML and

the AIF is that Araucaria and the other tools that support AML cater for a variety of different

theoretical frameworks and approaches. If AML as a whole can be mapped into AIF, then by

extension the same applies for these different approaches. We briefly consider here three styles

supported by Araucaria. First, the traditional box-and-arrow diagrams that not only characterise

formal diagrammatic approaches to argument theory, but that also represent an intuitive and

straightforward visual language for back-of-the-envelope style jottings. Second, the influential

Toulmin approach (see Section 3.3.2) with a strong jurisprudential and pedagogic heritage. And

third, the Wigmore style analysis, used exclusively in legal practice (Wigmore 1913). Though

the three approaches differ significantly in their ontological characters, intended audiences, and

domains of use, they also share a number of features that has made them amenable to AML-based

representation –and that means they form just a subset of what the AIF can represent.

The example shown in Fig. 10 is taken from one of Wigmore’s cases, Hatchett v. Com., and

shows just a small part of the argument. In summary, the prosecution is trying to show that Y.

5 REIFICATIONS 19

Figure 10 The poison case – Wigmore analysis

died of poison (A). Two lines of argument are provided: the first one is circumstantial, stating

that Y. fell dead...and second one is testimonial, based on what Y. said before dying (that the

whisky was killing him) (15). The first claim has two witnesses (9, 10), the second just one (16).

The defence attacks the second witness claim by pointing out the corroborative evidence that the

witness is biased (17). The various other marks indicate the strength of relationships between

the arguments, and that evidence has been admitted to the jury (the ∞ on boxes 9 and 10).

The same analysis when rendered in Araucaria’s box-and-arrow approach is shown in Fig. 11,

which emphasises the scheme relationships but does not show different classes of evidence. This

approach also highlights that something interesting is going on with the defence’s claim of Sallie’s

bias: it is working to attack the Witness Testimony inference scheme in an undercutting style.

Given the inter-translation between these two versions of the same analysis, we would hope that

the AIF version would support either interpretation. As Fig. 11 demonstrates, the AIF ontology

handles the underlying structures easily. The probandum (A: Y. died of poison) is supported

through two separate S-nodes that embody specific rule applications. The first makes the link from

Y’s actual death (7). That in turn is supported, through two applications of the witness testimony

argumentation scheme, by two individual accounts of his death (9, 10). The other line of support

for A is from the application of a rule that links from the premise (15) (that Y. himself declared

that the whisky was killing him). That premise in turn is supported through an application of the

witness testimony scheme which is founded upon testimony evidence (16). However, there is an

application of a conflict definition that undermines (or, specifically, undercuts) the application

of the witness testimony scheme, founded upon the bias of the witness (17). This offers a clear

example of how conflict definitions function to encapsulate the critical questions associated with

a particular presumptive argumentation scheme (Walton 1996).

This AIF representation includes structural information, some of which is explicit in the box-

and-arrow diagram, and some of which in the Wigmore analysis. The only information that is

lost (such as the fine-grained analysis of evidence types provided in the Wigmore framework) can

be re-introduced as values on node attributes in a Wigmore (or legalistic) extension to the core

ontology.

20 c. chesñevar, j. mcginnis, s. modgil, i. rahwan, c. reed, g. simari, m.
south, g. vreeswijk, s. willmott

Figure 11 The poison case – Standard analysis

5.3 An example reification of the AIF in RDF Schema/RDF

The reification of the AIF reported in this sub-section is an attempt to exploit the potential

of Semantic Web technology (Antoniou & van Harmelen 2004) in argument representation and

processing. The Semantic Web effort, led by Tim Berners-Lee, attempts to create a universal

medium for information exchange by giving computer-understandable meaning (semantics) to the

content of documents on the World Wide Web. Particularly useful for the context of the Semantic

Web is the Resource Description Framework (RDF)13 which provides a general framework for

describing Internet resources. RDF defines a resource as any object that is uniquely identifiable

by an Uniform Resource Identifier (URI). Properties (or attributes) of resources are defined using

an object-attribute-value triple, called a statement.14 RDF statements can be represented as 3-

tuples, as directed graphs, or using a standard XML-based syntax. Unlike XML, which describes

document models in directed-tree-based nesting of elements, RDF’s model is based on arbitrary

graphs, which are better suited for creating conceptual domain models. That way, RDF can

provide a more concise way of describing rich semantic information about resources. As a result,

more efficient representation, querying and processing of domain models become possible.

RDF Schema (RDFS)15 is an (ontology) language for specifying vocabularies in RDF using

terms described in the RDF Schema specification. RDFS provides mechanisms for describing

characteristics of resources, such as the domains and ranges of properties, classes of resources, or

class taxonomies. RDFS (vocabulary specifying) statements are themselves described using RDF

triples. Recently (Rahwan & Sakeer 2006), we have first specified the AIF core ontology in RDFS

using the Protégé ontology development environment.16 For example, the following RDFS code

declares the class PA-Node and states that it is a sub-class of the class S-Node.

<rdfs:Class rdf:about="&kb;PA_Node" rdfs:label="PA_Node">

<rdfs:subClassOf rdf:resource="&kb;S-Node"/>

</rdfs:Class>

13http://www.w3.org/RDF/
14Sometimes, an attribute is referred to as a property or a slot.
15http://www.w3.org/TR/rdf-schema/
16http://protege.stanford.edu/

5 REIFICATIONS 21

Node

I-Node S-Node Conflict-Node

is-a is-a is-a

Claim Data Backing Rebuttal Qualifier

is-a
is-a is-a is-a

is-a

RA-Node PA-Node

is-a is-a

Rebuttal-Application Warrant Qualifier-Application

is-a is-a is-a

ToulminArgument Scheme

Figure 12 Toulmin argument class hierarchy in RDF Schema as an extension of the AIF ontology

Next, the following elements from Toulmin’s scheme were introduced as I-Nodes: claim,

data, backing, rebuttal, and qualifier. All these elements represent passive declarative knowl-

edge. Toulmin’s warrant was expressed as an RA-Node, since it holds part of the argument

together, namely the data nodes and the claim. Similarly, we introduced two other types

of RA-Nodes: Rebuttal-Application nodes (used to link rebuttal nodes to claims) and

Qualifier-Application nodes (used to link qualifier nodes to claims). The resulting ontology

is represented in Fig. 12.

Note that the concept ToulminArgument is a standalone concept. Instances of this concept will

stand for complete arguments expressed in Toulmin’s scheme. Such instances must therefore refer

to instances of the various elements of the scheme. The ontology imposes a number of restrictions

on these elements and their interrelationships. In particular, each Toulmin argument must contain

exactly one claim, exactly one warrant, exactly one qualifier, at least one backing, and at least

one data element. The following RDFS code declares the property claim which links instances

of ToulminArgument to instances of type Claim, and states that each ToulminArgument must be

linked to exactly one Claim:

<rdf:Property rdf:about="&kb;claim"

a:maxCardinality="1"

a:minCardinality="1"

rdfs:label="claim">

<rdfs:domain rdf:resource="&kb;ToulminArgument"/>

<rdfs:range rdf:resource="&kb;Claim"/>

</rdf:Property>

In our ontology, we defined various types of edges to capture every type of edge, such as those

that emanate from backing nodes to warrant nodes, those from warrants to claims, and so on.

Note that according to our proposal a single claim node can belong to multiple instances of

Toulmin arguments. Thus, for example, a single claim may be supported by multiple arguments.

Moreover, a single data node could contribute to multiple unrelated claims. The RDF graph

model enables such flexibility.

With the ontology in place, it is now possible to create instances of the Toulmin argument

scheme in RDF. Figure 13 shows an instance representing the argument mentioned above for

justifying the war on an imaginary country called Irat.

In the Figure, we distinguished S-Nodes by dotted boxes although from they are treated the

same from the point of view of RDF processing.

22 c. chesñevar, j. mcginnis, s. modgil, i. rahwan, c. reed, g. simari, m.
south, g. vreeswijk, s. willmott

Warrant: Countries
with WMD's must

be attacked

Rebuttal-
Application

warrant-to-claim
Claim: War on Irat

is justified

Rebuttal: CIA
reports about Irat

possessing WMDs
not credible

Backing: Countries
with WMD's are

dangerous

Data: There are
WMDs inIrat

Qualifier-
Application

Qualifier: attacking Irat
is less damaging than
the potential damage
posed by its WMDs

qualifier-to- qualifierapp rebuttal-to- rebuttalapp

backing-to-warrant

qualifierapp -to-claim rebuttalapp-to-claim
data-to-warrant

Figure 13 RDF graph for a Toulmin argument claiming that war on Irat is justified

Our ultimate aim is to provide an infrastructure for publishing semantically annotated

arguments on the Semantic Web using a language that is semantically rich and amenable to

machine processing. The choice of RDF as a representation language was motivated by its

expressive power and the availability of tools for navigating and processing RDF statements.

In order to test our idea, we uploaded the argument instances on an installation of Sesame:17 an

open source RDF repository with support for RDF Schema inferencing and querying. Sesame can

be deployed on top of a variety of storage systems (relational databases, in-memory, filesystems,

keyword indexers, etc.), and offers a large set of tools to developers to leverage the power of RDF

and RDF Schema, such as a flexible access API, which supports both local and remote access,

and several query languages, such as RQL and SeRQL. Sesame itself was deployed on the Apache

Tomcat server, which is essentially a Java servlet container.

We have written a number of queries to demonstrate the applicability of our approach. The

following query retrieves all warrants, data and backings for the different arguments in favour of

the claim “War on Irat justified.”

select WARRANT-TEXT, DATA-TEXT, BACKING-TEXT

from {WARRANT} kb:scheme-edge-warrant-to-claim {CLAIM},

{WARRANT} kb:text {WARRANT-TEXT},

{DATA} kb:data-edge-data-to-warrant {WARRANT},

{DATA} kb:text {DATA-TEXT},

{BACKING} kb:data-edge-backing-to-warrant {WARRANT},

{BACKING} kb:text {BACKING-TEXT},

{CLAIM} kb:text {CLAIM-TEXT}

where

CLAIM-TEXT like "War in Irat justified"

using namespace kb = http://protege.stanford.edu/kb#

The output of the above query returned by Sesame will be the following:

WARRANT-TEXT DATA-TEXT BACKING-TEXT

Countries with WMD’s
must be attacked

There are WMD’s in
Irat

Countries with WMD’s
are dangerous

17http://www.openrdf.org/

6 CONCLUSIONS AND OPEN ISSUES 23

Query results can be retrieved via Sesame in XML for further processing. In this way, we could

build a more comprehensive system for navigating argument structures through an interactive

user interface that triggers such queries.

6 Conclusions and Open Issues

As discussed in Section 1, our AIF proposal aims at overcoming two major limitations present in

currently available argument mark-up languages. On the one hand, existing argument mark-up

languages are tailored to be used with a specific tool rather than for facilitating inter-operability

of arguments among a variety of tools. On the other hand, these languages are primarily aimed at

enabling users to structure arguments through diagrammatic linkage of natural language sentences

rather than using formal logical statements. These limitations constitute a significant hindrance

to the development and practical deployment of argumentation systems, mainly because of the

lack of a shared, agreed notation or “interchange format” for argumentation and arguments.

In order to solve this problem we have developed a draft specification for an Argument Inter-

change Format intended for representation and exchange of data between various argumentation

tools and multi-agent reasoning and communication structures. The development of such an AIF

is a highly challenging endeavor, as it requires providing an abstract model for capturing different

features from a number of different scientific areas (such as argumentation theory, multiagent

systems, and non-classical logics). In this context, it must be remarked that our proposal is a

‘consensus’ abstract model emerged from joint work among researchers from these different areas

rather than a fully fledged proposal. Further, as noted in Section 3.2.5, the current model may

well not capture all types of argumentation that are of interest. Specific significant open issues

which arose during discussion included:

1. Currently no distinction is being made for AIF formalisms which might be used in

GUI/Tool import-export type application and those which might be used in agent-to-agent

communication. While the core concepts may be the same it remains an open issue as to

whether one format can really adequately cover both cases.

2. Given the potential richness of the communication concepts ontology it remains an open issue

as to how close to generic Agent Communication Languages (ACLs – such as FIPA-ACL,

KQML, etc.) AIF definitions may get. This affects possible re-use of ACL concepts and/or

overlaps with them and/or worries about tractability issues concerning ACL semantics and

consequently the semantics of the concepts defined here.

3. How should the community of users around the AIF organize themselves to agree on core

concepts and extensions?

4. How should reifications be generated in detail from high level concepts (e.g. development of

specific RDF / XML schemas or other syntax forms?

We think that future research for enhancing our current AIF proposal should aim at providing

appropriate answers for some of these open issues. In this respect, contributions, suggestions

and comments from other researchers interested in standardising an AIF are welcome. Finally,

it must be remarked that this article is focused on presenting the final conclusions of our joint

research work as a draft specification. A longer version of this document (containing initial inputs,

previous versions and a discussion forum) for feedback can be found on the AIF website at

http://x-opennet.org/aif/.

Acknowledgements

Support is gratefully acknowledged from Agentlink III18 and the ASPIC project (FP6-IST-

002307)19 (both funded by the European Comission), as well as from Ramón y Cajal Program

18http://www.agentlink.org
19http://www.argumentation.org

24 c. chesñevar, j. mcginnis, s. modgil, i. rahwan, c. reed, g. simari, m.
south, g. vreeswijk, s. willmott

(MCyT, Spain), from Spanish Projects TIC2003-00950, TIN2004-07933-C03-01/03 and TIN2004-

07933-C03-03, and from CONICET (Argentina). Additional inputs and contributions are also

gratefully acknowledged from all of the following: Leila Amgoud, Trevor Bench-Capon, Jamal

Bentahar, Ivan Bratko, Martin Caminada, Sylvie Doutre, John Fox, Dan Grecu, David Hitchcock,

Tsakou Ioanna, Paul Krause, Nicolas Maudet, Peter McBurney, Maxime Morge, Martin Mozina,

Simon Parsons, Henri Prade, Henry Prakken, Glenn Rowe, Dave Robertson, Michael Rovatsos,

Carles Sierra, Simon Wells, and Michael Wooldridge.

While efforts have been made to reach a consensus on the content of this document, it is

important to note that it remains the integration of a wide range of inputs, and hence the final

result may not necessarily reflect the opinion of everybody who contributed – authorship or being

listed as contributor does not necessarily imply complete agreement with the text.

References

L. Amgoud & C. Cayrol (2002). ‘A Reasoning Model Based on the Production of Acceptable Arguments’.
Annals of Mathematics and Artificial Intelligence 34(1–3):197–215.

G. Antoniou & F. van Harmelen (2004). A Semantic Web Primer (Cooperative Information Systems).
MIT Press, Cambridge MA, USA.

T. J. M. Bench-Capon (1997). ‘Argument in Artificial Intelligence and Law’. Artificial Intelligence and
Law 5(4):249–261.

T. J. M. Bench-Capon & G. Staniford (1995). ‘PLAID: proactive legal assistance’. In Proceedings of the
fifth international conference on Artificial intelligence and law, pp. 81–88. ACM Press.

M. Caminada & L. Amgoud (2005). ‘An Axiomatic Account of Formal Argumentation’. In Proc. of the
Twentieth National Conference on Artificial Intelligence and the Seventeenth Annual Conference on
Innovative Applications of Artificial intelligence, Menlo Park, Calif. AAAI Press.

D. Carbogim, et al. (2000). ‘Argument-based applications to knowledge engineering’. Knowledge
Engineering Review 15(2):119–149.

C. Cayrol, et al. (2003). ‘On Decision Problems related to the preferred semantics for argumentation
frameworks’. Journal of Logic and Computation 13(3):377–403.

C. Chesñevar, et al. (2006). ‘Argument-Based Critics and Recommenders: A Qualitative Perspective on
User Support Systems’. Data & Knowledge Engineering 59(2):293–319.

C. I. Chesñevar, et al. (2000). ‘Logical models of arguments’. ACM Computing Surveys 32(4):337–383.
J. Conklin & M. L. Begeman (1988). ‘gIBIS: a hypertext tool for exploratory policy discussion’. ACM

transactions on office information systems 6(4):303–331.
P. M. Dung (1995). ‘On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic

Reasoning, Logic Programming and n-Person Games’. Artificial Intelligence 77(2):321–358.
M. Elhadad (1995). ‘Using Argumentation in Text Generation’. Journal of Pragmatics 24:189–220.
L. Emmet & G. Cleland (2002). ‘Graphical Notations, Narratives and Persuasion: a Pliant Systems

Approach to Hypertext Tool Design’. In HYPERTEXT 2002, Proceedings of the 13th ACM Conference
on Hypertext and Hypermedia, June 11-15, 2002, University of Maryland, College Park, MD, USA,
pp. 55–64, New York, USA. ACM Press.

FIPA (2001). ‘Communicative Act Library Specification’. Tech. Rep. XC00037H, Foundation for
Intelligent Physical Agents.

A. J. Garćıa & G. R. Simari (2004). ‘Defeasible Logic Programming: An Argumentative Approach’.
Theory and Practice of Logic Programming 4(1):95–138.

T. F. Gordon & N. Karacapilidis (1997). ‘The Zeno argumentation framework’. In Proceedings of the
Sixth International Conference on AI and Law, pp. 10–18, New York, NY, USA. ACM Press.

C. L. Hamblin (1970). Fallacies. Methuen, London, UK.
A. Kakas & P. Moraitis (2003). ‘Argumentation Based Decision Making for Autonomous Agents’.

In Proc. 2nd International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS’03), pp. 883–890.

P. A. Kirschner, et al. (eds.) (2003). Visualizing Argumentation: Software Tools for Collaborative and
Educational Sense-Making. Springer-Verlag, London.

R. Loui, et al. (1997). ‘Progress on Room 5: A testbed for public interactive semi-formal legal
argumentation’. In Proceedings of the Sixth International Conference on Artificial Intelligence and
Law, pp. 207–214, New York. ACM Press.

R. P. Loui (1998). ‘Process and Policy: Resource-Bounded Nondemonstrative Reasoning’. Computational
Intelligence: An International Journal 14:1–38.

N. Maudet & B. Chaib-draa (2002). ‘Commitment-based and dialogue-game based protocols: new trends
in agent communication languages’. The Knowledge Engineering Review 17(2):157–179.

6 CONCLUSIONS AND OPEN ISSUES 25

N. Maudet & B. Chaib-draa (2003). ‘Commitment-based and Dialogue-game based Protocols – New
Trends in Agent Communication Language’. Knowledge Engineering Review 17(2):157–179.

P. McBurney, et al. (2005). ‘The eight-fold way of deliberation dialogue’. Intelligent Systems (In press)
.

P. McBurney & S. Parsons (2002). ‘Games that agents play: A formal framework for dialogues between
autonomous agents.’. Journal of Logic, Language and Information, Special Issue on Logic and Games
11(3):315–334.

P. McBurney & S. Parsons (2003). ‘Dialogue Game Protocols’. In M.-P. Huget (ed.), Communication
in Multiagent Systems, vol. 2650 of Lecture Notes in Computer Science, pp. 269–283. Springer Verlag,
Berlin, Germany.

P. McBurney, et al. (2002). ‘Desiderata for agent argumentation protocols’. In Proceedings of the First
International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2002), pp.
402–409. ACM Press.

S. Modgil (2006). ‘Hierarchical Argumentation’. In Proceedings of the 10th European Conference on
Logics in Artificial Intelligence. Liverpool, UK.

S. Parsons, et al. (eds.) (2006). Argumentation in Multi-Agent Systems, Second International Workshop,
ArgMAS 2005, Utrecht, Netherlands, July 26, 2005, Revised Selected and Invited Papers, vol. 4049 of
Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin, Germany.

J. Pollock (1987). ‘Defeasible Reasoning’. Cognitive Science 11:481–518.
H. Prakken & G. Sartor (1997). ‘Argument-based extended logic programming with defeasible priorities’.

Journal of Applied Non-Classical Logics 7:25–75.
H. Prakken & G. A. W. Vreeswijk (2002). ‘Logics for defeasible argumentation’. In D. Gabbay &

F. Günthner (eds.), Handbook of Philosophical Logic, vol. 4, pp. 219–318. Kluwer Academic Publishers.
I. Rahwan (2005). ‘(Editor) Special Issue on Argumentation in Multi-Agent Systems’. Journal of

Autonomous Agents and Multi-Agent Systems (JAAMAS) 11(2):115–206.
I. Rahwan, et al. (eds.) (2005). Argumentation in Multi-Agent Systems: First International Workshop,

ArgMAS 2004, New York, NY, USA, July 19, 2004, Revised Selected and Invited Papers, vol. 3366 of
Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin, Germany.

I. Rahwan, et al. (2003). ‘Argumentation Based Negotiation’. Knowledge Engineering Review 18(4):343–
375.

I. Rahwan & P. V. Sakeer (2006). ‘Towards Representing and Querying Arguments on the Semantic Web’.
In P. E. Dunne & T. J. M. Bench-Capon (eds.), Computational Models of Argument (Proceedings of
COMMA 2006), Amsterdam, The Netherlands. IOS Press.

C. Reed (2006). ‘Representing Dialogic Argumentation’. Knowledge Based Systems 19(1):22–31.
C. Reed & T. J. Norman (eds.) (2004). Argumentation Machines: New Frontiers in Argument and

Computation, vol. 9 of Argumentation Library. Kluwer Academic Publishers, Dordrecht, The
Netherlands.

C. Reed & G. W. A. Rowe (2004). ‘Araucaria: Software for Argument Analysis, Diagramming and
Representation’. International Journal of AI Tools 14(3-4):961–980.

D. Robertson (2004). ‘Multi-agent Coordination as Distributed Logic Programming’. In International
Conference on Logic Programming, pp. 416–430, Sant-Malo, France.

S. B. Shum, et al. (2000). ‘ScholOnto: An Ontology-Based Digital Library Server for Research Documents
and Discourse’. International Journal of Digital Libraries 3(3):237–248.

S. B. Shum, et al. (2006). ‘Modelling Naturalistic Argumentation in Research literatures: Representation
and Interaction Design Issues’. International Journal of Intelligent Systems, Special Issue on
Computational Modelling of Naturalistic Argumentation .

K. Sycara (1992). ‘The PERSUADER’. In D. Shapiro (ed.), The Encyclopedia of Artificial Intelligence.
John Wiley & Sons.

S. Toulmin (1958). The Uses of Argument. Cambridge University Press, Cambridge, UK.
B. Verheij (1999). ‘Automated argument assistance for lawyers’. In Proceedings of the Seventh

International Conference on Artificial Intelligence and Law, pp. 43–52, New York. ACM Press.
D. Walton (1996). Argumentation Schemes for Presumptive Reasoning. Lawrence Erlbaum Associates.
D. N. Walton & E. C. W. Krabbe (1995). Commitment in Dialogue: Basic Concepts of Interpersonal

Reasoning. SUNY Press, Albany NY, USA.
J. H. Wigmore (1913). The Principles of Judicial Proof. Little Brown & Co.

