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Abstract

Until recently, little work has been dedicated to the representation and interchange of informal,

semi-structured arguments of the type found in natural language prose and dialogue. To redress

this, the research community recently initiated work towards an Argument Interchange Format

(AIF). The AIF aims to facilitate the exchange of semi-structured arguments among different

argument analysis and argumentation-support tools. In this paper, we present a Description

Logic ontology for annotating arguments, based on a new reification of the AIF and founded in

Walton’s theory of argumentation schemes. We demonstrate how this ontology enables a new kind

of automated reasoning over argument structures, which complements classical reasoning about

argument acceptability. In particular, OWL reasoning enables significantly enhanced querying of

arguments through automatic scheme classifications, instance classification, inference of indirect

support in chained argument structures, and inference of critical questions. We present the

implementation of a pilot Web-based system for authoring and querying argument structures

using the proposed ontology.

1 Introduction

Arguments are presented every day on the Web, in discussion forums, blogs, news sites, etc. As

such, the Web acts as an enabler of large-scale argumentation, where different views are presented,

challenged, and evaluated by contributors and readers. However, these methods do not capture

the explicit structure of argumentative viewpoints. This makes the task of evaluating, comparing

and identifying the relationships among arguments difficult.

Recently, various software tools have been developed to assist users in analysing textual

arguments (e.g. Araucaria (Reed and Rowe, 2004)), for helping users construct well-organised

textual arguments (e.g. Parmenides (Atkinson et al., 2006)), and for organising debates on the
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Web (e.g. Cohere (Shum, 2008), Truthmapping1, Debatepedia2). However, little integration exists

between such systems, mainly due to the lack of a unified ontology for describing argument

structures.

Recently, the ‘computational modelling of argument’ research community initiated work

towards an Argument Interchange Format (AIF) (Chesňevar et al., 2006). The AIF aims to

facilitate the exchange of semi-structured arguments among different argument analysis and

argumentation-support tools.

To demonstrate how the AIF recommendations can be implemented concretely, we recently

proposed the first AIF-based ontology (Rahwan et al., 2007) based on RDF Schema (Brickley

and Guha, 2004). A pilot system named ArgDF was implemented, through which users can

create arguments using different schemes and can query arguments using a Semantic Web query

language. Users can also attack or support parts of existing arguments, or use existing parts of

an argument in the creation of new arguments. As such, ArgDF is an open platform not only

for representing arguments, but also for building interlinked and dynamic argument networks on

the Semantic Web. This initial public-domain tool was intended to seed what it is hoped will

become a rich suite of sophisticated applications for authoring, linking, navigating, searching,

and evaluating arguments on the Web.

In this paper,3 we extend our previous work on supporting argumentation on the Semantic

Web. In particular, the paper advances the state of the art in computational modelling of

argumentation in three ways. First, it presents the first ontology of argumentation schemes in a

Description Logic (DL) (Baader et al., 2003) using as a starting point the Argument Interchange

Format specification (Chesňevar et al., 2006). To our knowledge, this ontology is the most

expressive formal ontology of argument, based on Walton’s general theory of argumentation

schemes (Walton, 1996).

The second main contribution of this paper is in showing, for the first time, how DL

inference techniques can be used to reason about arguments, ranging from automatic argument

classification to reasoning about chained argument structures. To our knowledge, this kind of

reasoning has never been applied to argumentation schemes, and provides a complement to the

classical reasoning about argument acceptability (Baroni and Giacomin, 2007).

The third main contribution of this paper is providing the first implementation of an OWL-

based system for argumentation support on the Semantic Web. Using OWL enables significantly

enhanced querying and interaction with argument structures. These aspects are brought together

in a Web-based pilot system called Avicenna.

We emphasize that our aim here was not to present an extensive and complete ontology of

argumentation schemes. This task is beyond the scope of any single paper, and is a topic under

development in its own right (Walton, 1996; Walton et al., 2008). Instead, our aim is to show how

a new specification of the AIF top-level ontology enables some new kinds of automated reasoning

over schemes, once these are specialised further.

2 Mass Argumentation Tools on Web 2.0

There are a number of Web 2.0 applications designed to support large-scale argumentation on

the World Wide Web.4 In this section, we discuss some of these tools and provide a concise

assessment.

1http://www.truthmapping.com
2http://wiki.idebate.org/index.php/
3This paper is a revised and extended version of a paper that appeared in the proceedings of COMMA
2008 (Rahwan and Banihashemi, 2008).
4Web 2.0 refers to the second phase of applications on the World Wide Web. Though ill-defined, it is
typically taken to focus on user contribution and collaboration by tagging data (e.g. Social bookmarking),
editing data (e.g. Wikis), mass publishing (e.g. Weblogs) and Web feeds (e.g. RSS).
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2.1 Existing Tools

Debatepedia5 synthesizes two structuring elements: a ‘wiki’ technology and a ‘logic tree’ debate

methodology. The wiki enables collaborative content management on the World Wide Web by

users (a significant feature of wikis is the ease with which pages are created, edited and linked).

The logic tree is a pro/con hierarchy, in which the main debate topic is located at the root.

Arguments are added in free text format and do not follow any specific structure. Users support

(or attack) arguments by adding their own arguments under pro/yes (or con/no) sections of

each question. Arguments can be re-used across debates; however, each debate tree is treated in

isolation. Basic keyword search is provided.

Debategraph6 adds more structure to arguments by using elements representing different

argumentative constructs (e.g. issues open to debate, the positions taken, arguments attacking

or supporting these positions and repertoire of possible measures and alternative policies). It

provides a visual tool for visualising and navigating a tree structure of these elements, and has

been well-publicised recently by launching discussions through popular media such as the BBC7

and the White House.8 While the popularity of this tool is a very positive development, it does

not provide a distinction among different types of arguments.

Cohere9 (Shum, 2008) is another Web-based argumentation tool that is intended to allow

students and researchers to make personal and collective sense of problems. Users can create (or

re-use) Ideas and link them by means of different Connection types. All connections are broadly

classified as positive or negative. Ideas play one or more Roles within a given association. Both

connections and roles can be extended by users. Cohere offers an attractive visualisation that

supports browsing and searching of an argument network.

Truthmapping10 is a public argumentation support system which exhibits an advanced

argument structure; it distinguishes between premises and conclusions of an argument. Users

can agree with or attack existing arguments (via critiques) and the creator of the argument can

add a single rebuttal to each critique. Arguments can be chained (although supporting claims

is restricted to the same team members) and can contain hyperlinks to other Websites or to

premises or conclusions of other arguments. A state map visually summarizes the overall user

rating of different parts of an argument. Basic keyword search is provided over categories and

topics. Truthmapping distinguishes between deductive and inductive types of arguments.

Parmenides (Atkinson et al., 2006) is an example of highly-structured argument-based

deliberation support systems (ADSS). Parmenides is based on a formal model of argumentation

and a specific inference scheme for justifying and critically evaluating the adoption of an action.

After a position is put forward, the system provides a forms-based, questionnaire interface to

obtain views from the user, and a fixed set of possible attacks that can be made. Once the

original position has been subjected to their critique, another sequence of forms enables them to

propose positions of their own; again in a way which will lead them to construct their position

in the same form of the argumentation scheme. A main drawback of Parmendies, similar to most

ADSS, is that it is aimed for a specific domain (in this case, reasoning about action). Thus, it

uses a particular scheme for arguing about action, along with its associated critical questions.

2.2 Assessing Web 2.0 Tools

Many existing Web 2.0 systems tackle the issue of capturing some structural attributes of

arguments, as well as the details of interactions among arguments. By doing so, they not

only facilitate evaluation and search of arguments, but also enable far better visualisation and

5http://wiki.idebate.org/index.php/
6http://debategraph.org/
7http://news.bbc.co.uk/1/hi/technology/7827112.stm
8http://www.whitehouse.gov/blog/Open-Government-Brainstorm-Collaboration-in-Action/
9http://cohere.open.ac.uk
10http://www.truthmapping.com
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navigation of arguments by users or automated tools. Moreover, such structure improves groups’

abilities to reach consensus and make higher quality decisions (Farnham et al., 2000). It could also

simplify the automated support for the argumentation process (e.g. discovering inconsistencies

or synergies among disputants)(Rahwan et al., 2007).

But current implementations suffer from a number of limitations. Firstly, most of them sacrifice

either structure or scalability. Highly structured systems (such as Parmenides) are intended

for smaller domains and are based on specific reasoning patterns instead of general theories

of argumentation, while highly scalable systems (such as Debatepedia) present very simple

structures of arguments and argument networks, limiting automated querying and analysis of

argument repositories.

Another drawback of Web 2.0 argumentation systems such as Truthmapping is that while

arguments are structured and possibly hyper-linked, these links carry no explicit semantics. This

limitation hinders the possibility of using meta-data about arguments to enhance the automated

search and evaluation.

Lastly, current tools are domain-, audience- and task-specific, with no common ontology,

making it impossible to provide robust services (such as query answering) that utilize arguments

from multiple mass argumentation systems (Rahwan et al., 2007; Rahwan, 2008).

2.3 Argumentation and the Semantic Web

The key feature of Semantic Web technologies is that they represent Web information in standard,

machine-processable formats. In the current context, semantic markup enables us to explicitly

annotate arguments and their different components in order to process (or reason with) those

annotations.

Semantic Web technologies can present a solution to the integration among mass argumenta-

tion tools through two key features. Firstly, a unified argument description ontology could act

as an inter-lingua between the different tools and resources. Secondly, if a standard ontology of

arguments cannot be achieved, then ontology mapping tools (Kalfoglou and Schorlemmer, 2003)

can potentially provide means for the automatic translation of a variety of argument annotation

languages (Rahwan, 2008).

XML, located at the lower layer of the Semantic Web technologies, introduces structure and

syntactic interoperability. The provided structure can be made machine-accessible through DTDs

and XML Schema. An XML interchange language called the “Argument Markup Language”

(AML) has been proposed for structuring arguments by annotating premises and conclusions in

XML. AML is used in Araucaria (Reed and Rowe, 2004) which is a stand-alone application tool for

analysing and diagramming arguments in which arguments can be authored (diagrammed) using

alternative sets of argumentation schemes such as those provided by Walton (1996), Perelman and

Olbrechts-Tyteca (1969) and Katzav and Reed (2004). This tool also provides the facility to design

one’s own argumentation schemes. Once arguments have been analysed, they can be uploaded to

AraucariaDB, which is an online repository of arguments. It provides a search engine,11 which

allows advanced searches based on combination of different parameters such as argumentation

schemes, argument creation date range, argument analyst or source, etc. Araucaria enables search

over online argument repositories using XPath queries.

XML-based argument markup languages share a limitation: standard XML does not provide

any means of talking about the meaning of the data. As a consequence, the semantics of arguments

specified in these languages is tightly coupled with particular schemes to be interpreted in a

specific tool and according to a specific underlying theory.

Unlike XML, Semantic Web ontology languages such as RDF Schema (RDFS) (Brickley and

Guha, 2004) and OWL (McGuinness and van Harmelen, 2004) can offer a unified ontology for

describing and annotating arguments as they contain machine-processable semantics. RDFS is

11http://araucaria.computing.dundee.ac.uk/doku.php
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a vocabulary for describing properties and classes of RDF-based resources, with semantics for

hierarchies of such properties and classes. OWL adds more vocabulary for describing properties

and classes to RDFS and enables reasoning about asserted concepts to infer new concepts.

DiscourseDB12 is an argumentation system based on Semantic Wiki (Völkel et al., 2006)

technology. This system collects the opinions of the world’s journalists and commentators about

ongoing political events and issues. Using this tool, users can post arguments and other users can

have “for”, “against” or “mixed” positions on those arguments. It provides the facility to export

content into OWL/RDF format for use by other Semantic Web applications.

In addition to simpler keyword searches, this system offers a semantic search module in which

users can use Semantic Media Wiki’s query language to write queries. The only type of inference

available over the argument network is sub-class hierarchy among topics (e.g. a query to list

instances of a specific topic theme returns instances under all the topics that are sub-classes of

that specific topic theme). Another drawback with DiscourseDB is that the arguments posted are

in free format text and do not follow any specific structures or adhere to any explicit schemes.

Moreover, it is not possible to form complex structures of multiple inter-connected arguments

(e.g. convergent, divergent, etc). Capturing argument structures as well as the details of different

interactions among arguments is essential for evaluation and querying of arguments by users or

automated tools.

In our earlier work, we presented ArgDF (Rahwan et al., 2007), a pilot system based on an

RDFS ontology that models the Argument Interchange Format (AIF) specification (Chesňevar

et al., 2006) and extends it to include Walton’s account of argumentation schemes (Walton, 1996)

(see Section 3 for a brief overview). In ArgDF, users can author new arguments that adhere to

any of the available schemes; they can also attack or support existing arguments (although the

process of support is constrained in some ways). Users can also extend the underlying ontology by

adding new argumentation schemes; the new schemes are added as new instances of the scheme

related concepts (classes) in the ontology. A semantic based keyword search facility is also offered

by the system that returns the supporting/attacking arguments of a claim containing a specific

keyword.

ArgDF implements an interchange format and is based on open standards, and therefore

resolves many problems related to current Web-based argumentation systems. However, the

underlying ontology of ArgDF suffers from number of limitations (discussed below), both in

terms of design specification and the ontology language used.

A core argumentation ontology developed in OWL is reported by Verheij Verheij (2005). He

suggests that each argumentation format should use the argumentation core ontology as its

starting point and provide a translation back into the core ontology. In this case, translations

between argumentation formats are optional and can be developed whenever considered useful.

The core ontology is meant to provide the glue. At the time of writing, no Web-based system has

been reported that utilizes this ontology.

3 The World Wide Argument Web

Motivated by the limitations in current Web-based argumentation systems, we proposed the

theoretical and the software foundations of a World Wide Argument Web (WWAW): a large-scale

Web of structured and inter-connected arguments (Rahwan et al., 2007). Here, following the same

principles as WWAW, we present an OWL ontology that reflects the argumentation domain in a

more comprehensive way than the original ontology underlying ArgDF. This ontology is based on

a new reification of the Argument Interchange Format (AIF) (Chesňevar et al., 2006). In addition,

Web Ontology Language (OWL) offers richer features than RDFS and presents the potential

for automated inference over argument structures, such as inference based on Description Logic

(Baader et al., 2003). As an example, reasoning can be used to infer the classification of hierarchy

of argumentation schemes.

12http://discoursedb.org/wiki/Main\_Page



40 i. rahwan et al

Node Graph 

(argument 

network)

has-a

Information

Node

(I-Node)

is-a

Scheme Node

S-Node

has-a

Edge

is-a

Rule of inference 

application node 

(RA-Node)

Conflict application 

node (CA-Node)

Preference

application node 

(PA-Node)

Derived concept 

applicatoin node (e.g. 

defeat)

is-a

...

ContextScheme

Conflict 

scheme

contained-in

Rule of inference 

scheme

Logical inference 

scheme

Presumptive

inference scheme
...

is-a

Logical conflict 

scheme

is-a

...

Prefeference 

scheme

Logical preference 

scheme

is-a

...
Presumptive 

preference scheme

is-a

uses uses uses

Figure 1 Original AIF Ontology

The AIF is a strong candidate for forming the foundation of a WWAW, and a brief summary

is included here of how the AIF handles arguments, relations between argument components, and

the thorny issues of representing conflict and representing argumentation schemes.

3.1 Argument Network and Nodes

The AIF represents a core ontology of argument-related concepts. Its specification can be

extended to capture different argumentation formalisms and schemes. The AIF core ontology

assumes that argument entities can be represented as nodes in a directed graph called an argument

network. A node can also have a number of internal attributes, denoting things such as title,

creator, creation date, certainty degree, acceptability status, etc. Figure 1 depicts the original

AIF ontology reported by Chesňevar et al. (2006).

Information nodes relate to content and are used to represent passive information contained in

an argument, such as a claim, premise or data that depend on domain of discourse. On the other

hand, S-nodes capture the application of schemes (i.e. patterns of reasoning). Such schemes may

be considered as domain-independent patterns of reasoning, which resemble rules of inference

in deductive logics but broadened to include non-deductive inference. The schemes themselves

belong to a class of schemes and can be classified further into: rule of inference scheme, conflict

scheme, and preference scheme etc.

The AIF specialises S-nodes further into three (disjoint) types of scheme nodes, namely rule

of inference application nodes (RA-node), preference application nodes (PA-node) and conflict

application nodes (CA-node). The word ‘application’ on each of these types was introduced in

the AIF to emphasize the fact that these nodes function as instances, not classes, of generic

inference rules. Intuitively, RA-nodes capture nodes that represent (possibly non-deductive) rules

of inference, CA-nodes capture applications of criteria (declarative specifications) defining conflict

(e.g. among a proposition and its negation, etc.), and PA-nodes are applications of (possibly

abstract) criteria of preference among evaluated nodes.

3.2 Edges in the Argument Network

The argument network contains edges that connect different nodes. For example, an edge named

“uses” connects a S-node to the scheme it exploits. The AIF core specification does not type its

edges. Edge semantics can be inferred from the types of nodes they connect. There are two types

of edges: the scheme edges that emanate from S-nodes and are meant to support conclusions that

follow from the S-node (these conclusions may either be I-nodes or S-nodes); and the data edges
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Figure 2 Examples of simple arguments and conflicts among them

that emanate from I-nodes ending in S-nodes and are meant to supply data, or information to

scheme applications. One of the restrictions imposed by the AIF is that no outgoing edge from an

I-node can be connected directly to another I-node. This ensures that the relationship between

two pieces of information must be specified explicitly via an intermediate S-node.

A simple argument in propositional logic is depicted in Figure 2(a). The S-nodes are

distinguished from I-nodes graphically by drawing the former with a slightly thicker border.

The node marked MP1 denotes an application of the modus ponens inference rule.

3.3 Representing Conflict in AIF

An attack or a conflict from one information or scheme node to another is captured through a

CA-node, which captures the type of conflict. An asymmetric attack represents a state where one

node (e.g. I-node) attacks another node (e.g. I-node) through a CA-node. On the other hand, in

symmetric attacks, two nodes (e.g. I-nodes) attack each other simultaneously through a CA-node.

Figure 2(b) depicts a symmetric conflict between two simple arguments (commonly known as a

rebuttal in the literature). The node marked neg1 denotes conflict as propositional negation.

Figure 2(c) illustrates a situation where a rule of inference node (RA-node) is attacked by

an I-node through a CA-node. An attack on an inference application is often referred to as an

undercut (Pollock, 1987).13 The node cut1 represents conflict as an undercut.

3.4 Representing Argumentation Schemes in AIF

Argumentation schemes are forms of argument that capture stereotypical patterns of reasoning.

They might represent the deductive or inductive forms of argument as well as forms of argument

that are presumptive in nature (Reed and Walton, 2005). These schemes are referred to as

presumptive inference patterns, in the sense that if the premises are true, then the conclusion

may presumably be taken to be true.

Structures and taxonomies of schemes have been analyzed and proposed by many theorists,

such as Perelman and Olbrechts-Tyteca (1969), van Eemeren and Grootendorst (1992), and

Katzav and Reed (2004), but it is Walton’s exposition (Walton, 1996) that has been most

influential in computational work.

Each Walton scheme has a name, conclusion, set of premises and a set of critical questions.

Critical questions enable contenders to identify the weaknesses of an argument based on the

particular scheme, and potentially attack the argument. Here is an example:

13In some literature, asymmetric attacks by a CA-node on an I-node are also referred to as undercuts;
for example, as explained by Prakken and Sartor (1997), an argument A undercuts another argument B
if A proves(claims) what was assumed unprovable by B.
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Scheme 1 Argument from Position to Know

– Position to know premise: E is in a position to know whether A is true (false).

– Assertion Premise: E asserts that A is true (false).

– Conclusion: A may plausibly be taken to be true (false).

– Critical Questions

1. Knowledge: Is E in a position to know whether A is true(false)?

2. Trustworthiness: Is E an honest (trustworthy, reliable) source?

3. Opinion: Did E assert that A is true(false)?

Many types of different schemes are explained by Walton (2006); examples of which include:

Argument from Sign, Argument from Analogy, Argument from Expert Opinion, etc. Actual

arguments are instances of schemes.

Argument 1 Instance of Argument from Position to Know

– Premise: Allen is in a position to know whether Brazil has the best football team.

– Premise: Allen says Brazil has the best football team.

– Conclusion: Brazil has the best football team.

It is possible that premises may not always be stated, in which case it is said that a given premise

is implicit (Walton, 2006). One of the benefits of argument classification is that it enables analysts

to uncover the hidden premises behind an argument, once the scheme has been identified.

The critical questions help to evaluate arguments by serving as a means to inspect arguments

based on a particular argumentation scheme. As discussed by Gordon et al. (2007), critical

questions are not all alike. Some questions may refer to assumptions required for the inference to

go through, while others may refer to exceptions to the rule, and correspond to Toulmin’s rebuttal

(Toulmin, 1958). The contemporary view is that the main difference between assumptions and

exceptions lies in the burden of proof. The proponent of the argument has the burden of proof to

answer questions about assumptions, while with exceptions the burden shifts to the questioner.

A notable aspect of schemes, receiving relatively little attention in the literature, is that they

do not merely describe a flat ontology of arguments. Consider the following scheme.

Scheme 2 Argument from Expert Opinion

– Expertise premise: Source E is an expert in domain D containing proposition A.

– Assertion premise: E asserts that A is true (false).

– Conclusion: A may plausibly be taken to be true (false).

– Critical Questions

1. Expertise: How credible is expert E?

2. Trustworthiness: Is E reliable?

3. Consistency: Is A consistent with the testimony of other experts?

4. Backup Evidence: Is A supported by evidence?

It is clear that this scheme specialises the scheme for argument from position to know. Apart

from the fact that both schemes share the conclusion and the assertion premise, the statement

“Source E is an expert in domain D containing proposition A” is clearly a specialisation of the

statement that “E is in a position to know (things about A).” Having expertise in a field causes

one to be in a position to know things in that field.14

Thus, schemes themselves have a hierarchical ontological structure, based on a classification

of their constituent premises and conclusions. Capturing such structures (and in general,

14Indeed, there may be other reasons to be in a position to know A. For example, if E is taken to refer to
society as a whole, then the argument from position to know becomes “argument from popular opinion.”
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Figure 3 An argument network linking instances of argument and scheme components

capturing the hierarchical ontological structure of different argumentation schemes) presents a

new opportunity to enhance analysis and querying of arguments in argument networks.

Let us now consider how schemes may be formalised in the AIF. The initial AIF specification

separates the classification of nodes from the classification of schemes (see Figure 1). Both nodes

and schemes are independently classified upper-level concepts. S-nodes are classified into nodes

that capture inference, conflict, preference, etc. Likewise, schemes are classified into similar sub-

schemes such as inference schemes, conflict schemes and so on. S-nodes are linked to schemes via

a special edge uses.

It should be noted that the original AIF represents an “abstract model”, allowing a number

of different concrete reifications to be made. The reification of the AIF in ArgDF ontology

defines two types of classes for representing schemes and nodes. Moreover, Rahwan et al. (2007)

introduced a new type of class, Form node (F-node), to capture the generic form of statements (e.g.

assumptions, premises) that constitute presumptive arguments. For example, PremiseDescriptor

is a sub-class of F-node that captures the generic form of premises used in arguments.

In ArgDF, the actual arguments are specified by instantiating node types, while actual schemes

are created by instantiating the “scheme” class. Then, argument instances (and their constituent

parts) are linked to scheme instances (and their part descriptors) in order to show what scheme

the argument follows.

Figure 3 shows an argument network for “an argument from position to know” using the

underlying ontology of ArgDF. Here, each node in the actual argument (unshaded nodes) is

explicitly linked, via a special-purpose property, to the form node it instantiates (shaded nodes).

These special-purpose proprieties (e.g. fulfilsScheme) are particular reifications of the “uses”

relation (between S-nodes and schemes) in the original AIF specification.

From the above, it is clear that ArgDF’s reification of the AIF causes some redundancy at

the instance level. Both arguments and schemes are described with explicit structure at the

instance level. As a result, the property “fulfilsScheme” does not capture the fact that a S-

node represents an instantiation of some generic class of arguments (i.e. scheme). Having such

relationship expressed explicitly can enable reasoning about the classification of schemes.

In fact, the ontology presented here captures this relationship explicitly, presenting a simpler

and more natural ontology of arguments. The AIF model is reified by interpreting schemes as

classes and S-nodes as instances of those classes; in this case, the semantics of the “uses” edge

can be interpreted as “instance− of”. The design of the new ontology is discussed in detail in

section 4.
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4 A New Argumentation Ontology in Description Logic

Description Logics (DLs) (Baader et al., 2003) are a family of logical formalisms that have

initially been designed for the representation of conceptual knowledge in Artificial Intelligence

(see Appendix for a brief review). DL knowledge representation languages provide means for

expressing knowledge about concepts composing a terminology (TBox), as well as knowledge

about concrete facts (i.e. objects instantiating the concepts) which form a world description

(ABox). Since Description Logics have formal syntax and formal model-theoretic semantics,

various reasoning algorithms can be formulated, and we use some of these in this paper.

The new formalisation of the AIF argumentation ontology is expressed using the Ontology

Language OWL (McGuinness and van Harmelen, 2004) in DL notation. The ontology is designed

using a particular dialect of OWL, called OWL-DL, which is equivalent to logic SHOIN (D)

(Baader et al., 2003). While very expressive,15 SHOIN (D) is still decidable, and comes with

efficient reasoning support.

4.1 The Ontology

At the highest level, three concepts are identified: statements that can be made (that correspond

to AIF I-nodes), schemes that describe arguments made up of statements (that correspond to

AIF S-nodes) and authors of those statements and arguments (formerly just properties in AIF).

All these concepts are disjoint.

Scheme ⊑ Thing

Statement ⊑ Thing

Author ⊑ Thing

Author ⊑ ¬Scheme

Author ⊑ ¬Statement

Statement ⊑ ¬Scheme

As with the ArgDF reification of AIF, different specialisations of scheme are identified; for example

the rule scheme (which describes the class of arguments), conflict scheme, preference scheme etc.

RuleScheme ⊑ Scheme

ConflictScheme ⊑ Scheme

PreferenceScheme ⊑ Scheme

Each of these schemes can be further classified. For example, a rule scheme may be further

specialised to capture deductive or presumptive arguments. The same can be done with different

types of conflicts, preferences, and so on.

DeductiveArgument ⊑ RuleScheme

InductiveArgument ⊑ RuleScheme

PresumptiveArgument ⊑ RuleScheme

LogicalConflict ⊑ ConflictScheme

PresumptivePreference ⊑ PreferenceScheme

LogicalPreference ⊑ PreferenceScheme

A number of properties (or roles in DL terminology) are defined, which can be used to refer

to additional information about instances of the ontology, such as authors of arguments, the

creation date of a scheme, and so on. The domains and ranges of these properties are restricted

appropriately and described below.

15
SHOIN (D) allows expression of basic DL, transitive roles, nominals, role hierarchy, inverse roles and

number restrictions.
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⊤ ⊑ ∀creationDate.Date

⊤ ⊑ ∀creationDate−.Scheme

⊤ ⊑ ∀argT itle.String

⊤ ⊑ ∀argT itle−.RuleScheme

⊤ ⊑ ∀authorName.String

⊤ ⊑ ∀authorName−.Author

Scheme ⊑ ∀hasAuthor.Author

Scheme ⊑= 1creationDate

RuleScheme ⊑= 1argT itle

To capture the structural relationships between different schemes, their components should first

be classified. This is done by classifying their premises, conclusions, assumptions and exceptions

into different classes of statements. For example, at the highest level, we may classify statements

as declarative, comparative or imperative, etc.

DeclarativeStatement ⊑ Statement

ImperativeStatement ⊑ Statement

ComparativeStatement ⊑ Statement . . .

Actual statement instances have a property that describes their textual content.

⊤ ⊑ ∀claimText.String

⊤ ⊑ ∀claimText−.Statement

When defining a particular RuleScheme (i.e. class of arguments), we capture the relationship

between each scheme and its components. Each argument has exactly one conclusion and at least

one premise (which are, themselves, instances of class “Statement”). Furthermore, presumptive

arguments may have assumptions and exceptions.

RuleScheme ⊑ ∀hasConclusion.Statement

RuleScheme ⊑= 1hasConclusion

RuleScheme ⊑ ∀hasPremise.Statement

RuleScheme ⊑≥ 1hasPremise

PresumptiveArgument ⊑ ∀hasAssumption.Statement

PresumptiveArgument ⊑ ∀hasException.Statement

4.2 Examples

With this in place, it becomes possible to further classify the above statement types to cater for a

variety of schemes. For example, to capture the scheme for “Argument from Position to Know,”

the following classes of declarative statements need to be defined (each class is listed with its

property formDescription16 that describes its typical form).

PositionToHaveKnowledgeStmnt ⊑ DeclarativeStatement

formDescription : “E is in position to know whether A is true (false)”

KnowledgeAssertionStmnt ⊑ DeclarativeStatement

formDescription : “E asserts that A is true(false)”

KnowledgePositionStmnt ⊑ DeclarativeStatement

formDescription : “A may plausibly be taken to be true(false)”

LackOfReliabilityStmnt ⊑ DeclarativeStatement

formDescription : “E is not a reliable source”

16formDescription is an annotation property in OWL-DL. Annotation properties are used to add meta-
data about classes.
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Now it is possible to fully describe the scheme for “Argument from Position to Know.” Following

are the necessary and sufficient conditions for an instance to be classified as an argument from

position to know.

ArgFromPositionToKnow ≡ (PresumptiveArgument ⊓

∃hasConclusion.KnowledgePositionStmnt ⊓

∃hasPremise.PositionToHaveKnowledgeStmnt ⊓

∃hasPremise.KnowledgeAssertionStmnt)

ArgFromPositionToKnow ⊑ ∃hasException.LackOfReliabilityStmnt

Now, for the “Appeal to Expert Opinion” scheme, we only need to define one additional premise

type, since both the conclusion and the assertion premise are identical to those of “Argument

from Position to Know.”

FieldExpertiseStmnt ⊑ PositionToHaveKnowledgeStmnt

formDescription : “source E is an expert in subject domain D containing

proposition A”

Similarly, one of the exceptions of this scheme is identical to “Argument from Position to Know.”

The remaining assumptions and exception are added as follows:

ExpertiseInconsistencyStmnt ⊑ DeclarativeStatement

formDescription : “A is not consistent with other experts assertions”

CredibilityOfSourceStmnt ⊑ DeclarativeStatement

formDescription : “E is credible as an expert source”

ExpertiseBackUpEvidenceStmnt ⊑ DeclarativeStatement

formDescription : “E’s assertion is based on evidence”

Likewise, the necessary and sufficient conditions of “Appeal to Expert Opinion” are:

AppToExpertOpinion ≡ (PresumptiveArgument ⊓

∃hasConclusion.KnowledgePositionStmnt ⊓

∃hasPremise.F ieldExpertiseStmnt ⊓

∃hasPremise.KnowledgeAssertionStmnt)

AppToExpertOpinion ⊑ ∃hasException.LackOfReliabilityStmnt

AppToExpertOpinion ⊑ ∃hasException.ExpertiseInconsistencyStmnt

AppToExpertOpinion ⊑ ∃hasAssumption.CredibilityOfSourceStmnt

AppToExpertOpinion ⊑ ∃hasAssumption.ExpertiseBackUpEvidenceStmnt

Other argumentation schemes (e.g. argument from analogy, argument from sign, etc.) can be

defined in the same way.

4.3 Capturing Support and Conflict Among Arguments

Arguments can be chained together where a claim acts both as a premise of one argument and

as a conclusion of another. A transitive property named supports was added to the ontology, to

allow linking the supporting argument to the supported argument in a chain:

RuleScheme ⊑ ∀supports.RuleScheme

Conflict among arguments are captured through different specialisations of ConflictScheme

such as GeneralConflict and ExceptionConflict.

ExceptionConflict ⊑ ConflictScheme

GeneralConflict ⊑ ConflictScheme

GeneralConflict instances capture simple symmetric and asymmetric attacks among arguments

while ExceptionConflict instances represent exceptions to rules of inference. The definition

of ConflictScheme and Statement classes have been extended to include the appropriate

restrictions on properties used to represent attacks among different arguments.
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(b) Symmetric Attack among two simple arguments
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(a) Asymmetric Attack among two simple arguments
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(c) Undermining an assumption

PA1

PA2

CA

Arg1

hasPremise

hasPremise

hasConclusion

A1

GC3

PB1

PB2

CB

Arg2

hasPremise

hasPremise

hasConclusion

A2

confAttacks

AsmA1

hasAssumption

underMinesAssumption

attacks

(d) Attacking through  supporting an exception
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Figure 4 Representation of different types of attack among arguments

ConflictScheme ⊑ ∀confAttacks.(Statement ⊔ RuleScheme)

ConflictScheme ⊑ ∀isAttacked.Statement

ConflictScheme ⊑ ∀underMinesAssumption.Statement

Statement ⊑ ∀attacks.ConflictScheme

Statement ⊑ ∀confIsAttacked.ConflictScheme

Figures 4(a) to 4(d) illustrate how instances of conflict scheme and the related properties are

used to represent four different types of conflicts among arguments, namely, asymmetric attacks

(a), symmetric attacks (b), undermining assumptions (c) and attacking by supporting existing

exceptions (d).

In these figures, argument instances are denoted by Argn, premises are denoted by PX n,

conclusions by CX , assumptions by AsmX n, exceptions by ExcpX n and instances of general

conflict and exception conflict as GCn and EC 1 respectively where X = {A, B, C, ...} and n

represents the set of natural numbers {1,2,3,...}.



48 i. rahwan et al

PA1

Arg1 CA/PB1

PB2

PA2 Arg2 CB/PC1

PC2

Arg3 CC

Argument 1 Argument 2 Argument 3

supports

supports

Figure 5 Support among chained arguments

5 OWL Reasoning over Argument Structures

In this section, we describe a number of ways in which the expressive power of OWL and its

support for reasoning can be used to enhance user interaction with arguments.

5.1 Inference of Indirect Support in Chained Arguments

One of the advantages of OWL over RDF Schema is that OWL supports inference over transitive

properties. In other words, if r(X, Y ) and r(Y, Z), then OWL reasoners can infer r(X, Z). This

can be used to enhance argument querying.

Figure 5 shows three arguments chained together. In Argument 1, premises PA1 and PA2 have

the conclusion CA which is used at the same time as premise PB1 of the argument 2. Premises

PB1 and PB2 have the conclusion CB which is used at the same time as premise PC1 of argument

3; PC1 and PC2 have the conclusion CC. Here, we can say that Argument 1 indirectly supports

Argument 3. An OWL reasoner supports small and efficient queries corresponding to user requests

for all arguments that directly or indirectly support some conclusion.

5.2 Automatic Classification of Argumentation Schemes and Instances

In this section, we describe the general inference pattern behind classification of argumentation

schemes (and their instances). This inference is based on the statement hierarchy and the

conditions defined on each scheme. Two examples of this inference are also provided.

Let us consider two specialisations (sub-classes) of PresumptiveArgument : PresScheme1

and PresScheme2. An instance of the first scheme, PresScheme1, might have an instance of

CA class as its conclusion and premises from classes (PA1, PA2, ..., PAn), where classes CA and

(PA1, PA2, ..., PAn) are specialisations of the class Statement. Similarly, PresScheme2 has

members of CB class as its conclusion and its premises are from classes (PB1, PB2, ..., PBm)

where CB and (PB1, PB2, ..., PBm) are specialisations of Statement andm>= n. Let us assume

that a relationship exists between CA and CB, that they are either referring to the same class

or else that the latter is a specialisation of the former, i.e., (CB ≡ CA) ∨ (CB ⊑ CA).

We also assume a relationship exists among the premises of these two schemes in a way that

for every premise class of PresScheme1, there is a corresponding premise class in PresScheme2

that is either equal to or is a specialisation of the premise class in PresScheme1 (the opposite

does not hold as we have allowed that PresScheme2 could have greater number of premises than

PresScheme1), i.e. ∀x ∈ 1, 2, ...m, forally ∈ 1, 2, ..., n, (PBx ≡ PAy) ∨ (PBx ⊑ PAy).

The necessary and sufficient conditions on PresScheme1 and PresScheme2 are defined as:

PresScheme1 ≡ (PresumptiveArgument ⊓

∃hasConclusion.CA ⊓

∃hasPremise.PA1 ⊓

∃hasPremise.PA2 ⊓

∃hasPremise.(...) ⊓

∃hasPremise.PAn)
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PresScheme2 ≡ (PresumptiveArgument ⊓

∃hasConclusion.CB ⊓

∃hasPremise.PB1 ⊓

∃hasPremise.PB2 ⊓

∃hasPremise.(...) ⊓

∃hasPremise.PBm)

Considering the statement hierarchy and the necessary and sufficient conditions defined on

each class, PresScheme2 is inferred by the description logic reasoner as the sub-class of

PresScheme1 in case the number of premises in PresScheme2 is greater than number of premises

in PresScheme1 (i.e. m> n). In case the number of premises are the same (i.e m= n), and at

least one of the premises of PresScheme2 is a specialisation of a premise in PresScheme1 and/or

the conclusion CB is a specialisation of CA, PresScheme2 is also inferred as the sub-class of

PresScheme1.

Following the above explanation, due to the hierarchy of specialisation among different

descriptors of scheme components (statements) as well as the necessary and sufficient conditions

defined on each scheme, it is possible to infer the classification hierarchy among schemes.

An interesting example is offered by the specialisation relationship that can be inferred between

“Fear Appeal Argument” and “Argument from Negative Consequences”.

Scheme 3 Argument From Negative Consequences

– Premise: If A is brought about, bad consequences will plausibly occur.

– Conclusion: A should not be brought about.

– Critical Questions

1. How strong is the probability or plausibility that these cited consequences will (may, might,

must) occur?

2. What evidence, if any, supported the claim that these consequences will (may, might,

must) occur if A is brought about?

3. Are there consequences of the opposite value that ought to be taken into account?

Scheme 4 Fear Appeal Argument

– Fearful situation premise: Here is a situation that is fearful to you.

– Conditional premise: If you carry out A, then the negative consequences portrayed in this

fearful situation will happen to you.

– Conclusion: You should not carry out A.

– Critical Questions

1. Should the situation represented really be fearful to me, or is it an irrational fear that is

appealed to?

2. If I don’t carry out A, will that stop the negative consequences from happening?

3. If I do carry out A, how likely is it that the negative consequences will happen?

The necessary and sufficient conditions of the “Argument from Negative Consequences” are

detailed as:

ArgNegativeConseq ≡ (PresumptiveArgument ⊓

∃hasConclusion.ForbiddenActionStmnt ⊓

∃hasPremise.BadConsequenceStmnt)

Likewise, for “Fear Appeal Argument”:
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FearAppealArg ≡ (PresumptiveArgument ⊓

∃hasConclusion.ForbiddenActionStmnt ⊓

∃hasPremise.FearfulSituationStmnt ⊓

∃hasPremise.FearedBadConsequenceStmnt)

The statements are defined below. Note that the “Feared Bad Consequence” statement is

a specialization of “Bad Consequence” statement, since it limits the bad consequence to those

portrayed in the fearful situation.

BadConsequenceStmnt ⊑ DeclarativeStatement

formDescription : “If A is brought about, bad consequences will plausibly occur”

ForbiddenActionStmnt ⊑ DeclarativeStatement

formDescription : “A should not be brought about”

FearfulSituationStmnt ⊑ DeclarativeStatement

formDescription : “Here is a situation that is fearful to you”

FearedBadConsequenceStmnt ⊑ BadConsequenceStmnt

formDescription : “If you carry out A, then the negative consequences portrayed

in this fearful situation will happen to you”

As a result of classification of schemes into hierarchies, instances belonging to a certain scheme

class will also be inferred to belong to all its super-classes. For example, if the user queries to return

all instances of “Argument from Negative Consequences,” the instances of all specializations of

the scheme, such as all argument instances from “Fear Appeal Arguments” are also returned.

5.3 Inferring Critical Questions

In this section we describe the general inference pattern behind inference of critical questions

from an argumentation scheme’s super-classes and provide an example.

In the previous section we described an assumption about two specialisations of

PresumptiveArgument, PresScheme1 and PresScheme2 and the fact that PresScheme2

was inferred to be the sub-class of PresScheme1. Each of these schemes might have different

assumptions and exceptions defined on their classes. For example, PresScheme1 has AsmA1 and

AsmA2 as its assumptions and ExcA1 as its exception. PresScheme2 has AsmB1 and ExcB1

as its assumption and exception respectively. AsmA1, AsmA2, AsmB1, ExcA1 and ExcB1 are

specialisations of Statement class. The the necessary conditions defined on classes PresScheme1

and PresScheme2 are:

PresScheme1 ⊑ ∃hasAssumption.AsmA1

PresScheme1 ⊑ ∃hasAssumption.AsmA2

PresScheme1 ⊑ ∃hasException.ExcA1

PresScheme2 ⊑ ∃hasAssumption.AsmB1

PresScheme2 ⊑ ∃hasException.ExcB1

Since PresScheme2 has been inferred by the reasoner as the specialization (sub-class) of

PresScheme1, a query to the system to return all assumptions and exceptions of PresScheme2,

is able to return all those explicitly defined on the scheme class (i.e. AsmB1 and ExcB1) as well

as those defined on any of its super-classes (in this case: AsmA1, AsmA2 and ExcA1).

Since the schemes are classified by the reasoner into a hierarchy, if certain assumptions or

exceptions are not explicitly stated for a specific scheme but are defined on any of its super-

classes, the system is able to infer and add those assumptions and exceptions to instances of

that specific scheme class. Since critical questions enable evaluation of an argument, inferring

additional questions for each scheme will enhance the analysis process.

Consider the critical questions for “Fear Appeal Argument” and “Argument from Negative

Consequences” given in the previous section. These critical questions are represented in the

ontology through the following statements:
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IrrationalFearAppealStmnt ⊑ DeclarativeStatement

formDescription : “It is an irrational fear that is appealed to”

PreventionOfBadConsequenceStmnt ⊑ DeclarativeStatement

formDescription : “If A is not carried out, this will stop the negative consequences

from happening”

OppositeConsequencesStmnt ⊑ DeclarativeStatement

formDescription : “There are consequences of the opposite value that ought to

be taken into account”

StrongConsequenceProbabilityStmnt ⊑ DeclarativeStatement

formDescription : “There is a strong probability that the cited consequences

will occur.”

ConsequenceBackUpEvidenceStmnt ⊑ DeclarativeStatement

formDescription : “There is evidence that supports the claim that these

consequences will occur if A is brought about.”

The necessary conditions on “Argument from Negative Consequences” that define these critical

questions are:

ArgNegatvieConseq ⊑ ∃hasException.OppositeConsequencesStmnt

ArgNegatvieConseq ⊑

∃hasAssumption.StrongConsequenceProbabilityStmnt

ArgNegatvieConseq ⊑

∃hasAssumption.ConsequenceBackUpEvidenceStmnt

Likewise, the necessary conditions on “Fear Appeal Argument” are:

FearAppealArg ⊑ ∃hasException.IrrationalFearAppealStmnt

FearAppealArg ⊑

∃hasAssumption.PreventionOfBadConsequenceStmnt

FearAppealArg ⊑

∃hasAssumption.StrongConsequenceProbabilityStmnt

“Fear Appeal Argument” is classified as a sub-class of “Argument from Negative Consequences.”

The critical questions 2 and 3 of “Argument from Negative Consequences” have not been explicitly

defined on “Fear Appeal Argument”, but can be inferred through reasoning.

6 Implementation

In this section, we explain the basic architecture of the implemented Web-based system

Avicenna.17 A comparison among different tools/technologies for building this system as well

as the reasons for choosing each tool/technology is also provided. Moreover, the main features of

this system are highlighted and briefly explained.

Avicenna’s basic system architecture is illustrated in Figure 6. It consists of three main tiers:

the data tier, the middle tier and the client tier. The argumentation ontology (including both

the TBox and the ABox) is stored in form of RDF statements (triples) in the back-end database

which constitutes the data tier. The middle tier is responsible for the DL reasoning and the

interface to the web, over which applications in the client tier connect.

17Avicenna was a Persian polymath, physician and Islamic philosopher (see http://en.wikipedia.org/
wiki/Avicenna). He developed an early theory on hypothetical syllogism, which formed the basis of
his early risk factor analysis. In addition to developing an early theory on propositional calculus and
an original theory on temporal modal syllogism, he also developed his own system of logic known as
“Avicennian logic” as an alternative to Aristotelian logic. Avicenna also contributed inventively to the
development of inductive logic, being the first to describe the methods of agreement, difference and
concomitant variation which are critical to inductive logic and the scientific method.
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Figure 6 Basic System Architechture

DL semantic web ontologies have a rich tooling environment. We used Protégé to implement

the ontology, Jena as a repository supporting SPARQL queries through ARQ, and Pellet for

reasoning.

6.1 Exploring Available Arguments

The system lists the available arguments by listing their titles. These titles are in form of

hyperlinks and can be used to navigate to a page where the details of the argument (its scheme,

author, conclusion, premises and critical questions) are listed for further exploration. Figure 7

displays the details of argument ‘Tipping lowers self esteem’ which is an instance of “Argument

from Expert Opinion.”

The View Arguments navigation menu item displays recent argument threads; the user can also

Search Arguments on the basis of keywords, structural features, and related properties (creation

date, author, etc.).

6.2 Creating New Arguments

New semantically annotated arguments can be authored using new claims or claims already

existing as part of available arguments in the system. By selecting Add New Argument from the

navigation menu, the user has the choice of creating a new argument that adheres to any of the

existing argumentation schemes.

After a specific argumentation scheme is chosen by the user, its constituent parts (the

conclusion, the premises, the assumptions and exceptions) are extracted by running a query on the

different restrictions defined on the scheme. If certain assumptions or exceptions are not explicitly

defined on a scheme but are defined on any of its deduced super-classes, the description logic

reasoner is able to infer them and add them to the list of asserted assumptions and exceptions.

The user is then forwarded to a page with a form containing place holders for the different

parts of the argument to be filled. Beside each place holder, a brief description of the claim

format is provided. The textual contents of assumptions and exceptions are already filled in

respective placeholders and only require minimal change by the user. Figure 8 illustrates the

page for authoring a new argument instance of “Fear Appeal Argument.”

The user may enter new claims or may choose to use any of the existing claims. He can access

the existing claims by clicking a link to access a page that displays all the available claims in the

system. This list can be searched and filtered as required. The paging technique is implemented

(through code) to limit the number of claims displayed in the page at any given time.

The instances of the conclusion and the premises are created under the appropriate statement

classes and linked to the argument instance through hasConclusion and hasPremise properties.

Instances of assumptions and exceptions (if available) are also created under the appropriate
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Figure 7 Argument Details

statement classes. Instances of assumptions represent a set of implicit premises of the argument

and are connected to the argument instance through hasAssumption property. Instances of

exceptions are connected to the argument instance through instances of ExceptionConflict and

hasException property; such exceptions will not undercut the presumptive argument instance

unless they are supported by further statements.

6.3 Attacking and Supporting Existing Arguments

Users can attack or support existing arguments. The available operations on each claim making

up the argument are accessible through different icons on the right side of each claim as illustrated

in Figure 7. Users can perform symmetric or asymmetric attacks (see Section 3.3) on a conclusion

or a premise.

Users can also choose to support the conclusion or premises of an argument. As explained in

Section5.1, if the supported claim is the premise of an argument, this claim is both the conclusion

of the supporting argument and the premise of the supported argument; thus creating a chain of

arguments. Users can also undercut (see Section 3.3) an argument by undermining an existing

assumption or supporting an existing exception of an argument. In every case, the user is required

to add a new argument fulfilling the supporting, attacking or undercutting role.

As the system allows re-using of existing claims while authoring new arguments as well as

supporting and attacking different claims that are part of an existing argument, interlinked and
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Figure 8 Adding New Arguments

dynamic argument networks are created – a central feature provided by the underlying ontology

design.

6.4 Retrieving attacking/supporting arguments of a claim

Viewing different types of attacks on a premise or conclusion is also available through a set of

icons displayed on the right hand side of the claim. Users can view the different claims that are

attacking or being attacked by the claim and then view the arguments that those claims are part

of. When the user chooses to view the attacks made against a certain claim, he has the option of

choosing among three different options: to view the claims that this claim attacks, or the claims

that attack this claim and finally the claims that attack this claim and are attacked by it at the

same time (symmetric attack). The result of choosing any of the options is displaying the list of

claims that are involved in a conflict relationship with the initial claim.

Users can also query the network to view different arguments that support a certain premise

or conclusion; the transitivity feature of the supports property is used to return all the arguments

supporting the claim whether directly or indirectly (as depicted in Figure 5).

7 Towards Argument Web Mining

In this section, we briefly discuss how our ontology can form a foundation for more sophisticated

applications that exploit ideas from Semantic Web Mining.

Web mining is the research field concerned with applying data mining techniques18 to the

data available on the world wide web. Such data includes content (e.g. text, images, and videos),

structure (e.g. links across webpages), and web usage (e.g. user browsing patterns). Recently,

web mining and the semantic web developed a benevolent relationship (the combination is called

Semantic Web Mining) (Stumme et al., n.d.). Web mining provides an automated mechanism

for building semantic Web ontologies and semantically annotating unstructured Web pages. The

semantic web structure on the other hand improves web mining results by providing semantic

information.

18Data mining is “the nontrivial process of identifying valid, previously unknown, and potentially useful
patterns” (Fayyad et al., 1996).



Representing and Classifying Arguments on the Semantic Web 55

We envision a similar cooperative relationship between web mining and the argument Web,

which we call the Argument Web Mining. Information extraction techniques (ranging from

keyword extraction to natural language processing) can automatically locate facts, concepts,

and structure in text, which can then be combined with our argumentation ontology in order to

automatically (or semi-automatically via interaction with a knowledge engineer) extract argument

instances and annotate the electronic document accordingly. Web mining can also be applied to

documents that are semantically tagged in order to automatically learn rules for recognizing

arguments from semantic information (e.g. an < expert > and < says > tag may trigger the

recognition of an “argument from expert opinion”). Unsupervised learning, such as k-means

clustering and association rule discovery (Hand et al., 2001), can help discover new argumentation

schemes and augment our proposed ontology, a process that is lengthy and error prone if done

manually. Mining user browsing patterns can also help in the construction of the argument Web.

For example, a user browses an opinion regarding a particular product then decides to add the

product to her shopping cart. This behaviour indicates that the browsed opinion is a strong

argument in favour of the product.

Once ‘shallow’ argument structure is identified through Web mining techniques, our onto-

logical reasoning technique can provide more fine-grained, knowledge-based classification of the

arguments. Hence, our approach provides part of a very sophisticated argument retrieval on the

Web.

Web mining also benefits from the Argument Web. Aside from allowing richer information

retrieval (e.g. “what are the arguments by experts against product A?”), the argument Web can

provide added value to argument-enabled Web sites. For example, when a user views an opinion

about a product, the argument web can be used to automatically point out the weaknesses in

the opinion’s argument (e.g. “the reviewer is not an expert”).

8 Discussion and Conclusions

This paper is a contribution to a line of work towards an Argument Interchange Format (AIF).

The AIF aims to facilitate the exchange of semi-structured arguments among different argument

analysis and argumentation-support tools, as well as the representation of arguments on the Web

in a unified format. While much prior work has been done on representing rules in XML for

the applications on the Web (e.g. RIF19 or SWRL (Horrocks et al., 2005)), relatively little work

has been done on representing arguments in a format suitable for Web applications. The AIF

provides primitives specifically aimed at representing aspects of complex argument structures,

such as attack between arguments, implicit presumptions underlying explicit arguments, and

capturing stereotypical classes of arguments as classified by theoretical work on argumentation

schemes (Walton, 1996). The AIF is still at a very early stage when compared with formal rule

interchange languages, and this paper is a contribution to bring the AIF up to speed.

We presented a Description Logic ontology for annotating arguments, based on a new reification

of the AIF and founded in Walton’s theory of argumentation schemes. We demonstrated how this

ontology enables automated reasoning over argument structures. In particular, OWL reasoning

enables significantly enhanced querying of arguments through automatic scheme classifications,

instance classification, inference of indirect support in chained argument structures, and inference

of critical questions. We present the implementation of a pilot Web-based system, called Avicenna,

for authoring and querying argument structures using the proposed ontology.

Avicenna is a candidate implementation for contributing to the task of bringing the WWAW

into existence. It supports storage of arguments in persistent RDF storage where it is possible

to create new arguments by introducing new claims, re-using existing claims, or introducing new

attacks. While creating new arguments, the inferred critical questions on that scheme are also

added to the argument instance.

19www.w3.org/2005/rules/
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Avicenna implements and uses queries in different tasks; for example: displaying the different

parts of an argument instance, displaying the details of an argumentation scheme and searching

for arguments in both basic and advanced modes (advanced search queries the argument network

based on different parameters; in case of searching for instances of a specific argumentation

scheme, inference is used to return the instances of inferred sub-classes of that argumentation

scheme as well). Queries are also utilized to return attacking or supporting arguments of a given

claim; searching for supporting arguments of a claim retrieves arguments that support the claim

both directly and indirectly.

It is important to note that our aim here was not to present an extensive and complete ontology

of argumentation schemes. This task is beyond the scope of any single paper, and is a topic under

development in its own right (Walton, 1996; Walton et al., 2008). Our aim here was to show

some new kinds of automated reasoning, over such schemes, made possible by Semantic Web

technologies. Hence, we focused on specifying the AIF top-level ontology, then specialising it

through some specific schemes as serves our purpose.

Avicenna does, however, have some key limitations. Firstly, the current approach to definition

of argumentation schemes (and therefore, the inference of hierarchy of schemes) is based on the

necessary and sufficient conditions on hasPremise and hasConclusion properties of each scheme

(as explained in detail in Section 5.2). Certain argument schemes exhibit somewhat complex

structures; for example, “Circumstantial Ad Hominem Argument” is a chain of argumentation

based on combining “Argument from Inconsistent Commitment” with the “Direct Ad Hominem

Argument” (Walton, 2006). In this scheme, an intermediate proposition forms the conclusion

of one scheme (argument from inconsistent commitment), while its final conclusion is based

on the conclusion of another scheme (direct ad hominem argument). It is not clear how such

compound schemes should be treated, either in Avicenna, or indeed in the AIF. Considering the

different types of argumentation schemes that the ontology must incorporate and the expected

classification hierarchy results, one possibility is that the necessary-and-sufficient conditions

on each scheme might be re-defined by using a new property, hasPart, that stands for both

hasPremise and hasConclusion properties, and properties hasPremise and hasConclusion will

become part of the necessary conditions.

It is important to note that the semantics captured by Avicenna pertains to the typology

and overall structure of the arguments. This is quite distinct from (but complimentary to) the

argument acceptability semantics studied extensively in the literature (Baroni and Giacomin,

2007). Indeed, the AIF’s original purpose was only to describe the structure of arguments, leaving

evaluation of argument acceptability to the various available theories.

From a technical perspective, the SPARQL query language is limited in its handling of

transitive properties in that it is not possible to limit the depth of application of transitive

properties. In the current system, when the user queries to view the supporting arguments of a

claim, it is not possible to limit the returned results to those triples that provide indirect support

up to two levels back (or any arbitrary number specified by the user).

This papers opens up many avenues for future research, the most important of which is perhaps

enabling people to easily author annotated arguments. This is crucial for accumulating sizeable

content suitable for further analysis and reasoning experiments. Some promising progress has been

made recently by providing Web interfaces for direct manipulation of networked visualisations

(e.g. as in Cohere (Shum, 2008) or Debategraph) and through argument blogging (Wells et al.,

2009). Another important research area is automatic argument tagging through a combination

of information retrieval and text analysis techniques (see Section 7 for more on this).

Appendix: Description Logics

Table 1 shows the syntax and semantics of common concept and role constructors. The letters A,

B are used for atomic concepts and C, D for concept descriptions. For roles, the letters R and S

are used and non-negative integers (in number restrictions) are denoted by n, m and individuals
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(i.e. instances) by a, b. An interpretation I consists of a non-empty set ∆I (the domain of the

interpretation) and an interpretation function, which assigns to every atomic concept A a set

AI ⊆∆I and to every atomic role R a binary relation RI ⊆∆I ×∆I .

A DL knowledge base consists of a set of terminological axioms (often called TBox) and a

set of assertional axioms or assertions (often called ABox). A finite set of definitions is called

a terminology or TBox if the definitions are unambiguous, i.e., no atomic concept occurs more

than once as left hand side.

Name Syntax Semantics

Concept & Role

Constructors

Top ⊤ ∆I

Bottom ⊥ ∅

Concept Intersect. C ⊓ D CI ∩ DI

Concept Union C ⊔ D CI ∪ DI

Concept Negation ¬C ∆I \ CI

Value Restriction ∀R.C {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}

Exist. Quantifier ∃R.C {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}

Unqualified ≥ nR {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI} |≥ n}
Number ≤ nR {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI} |≤ n}
Restriction = nR {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI} |= n}

Role-value- R ⊆ S {a ∈ ∆I | ∀b.(a, b) ∈ RI → (a, b) ∈ SI}
map R = S {a ∈ ∆I | ∀b.(a, b) ∈ RI ↔ (a, b) ∈ SI}

Nominal I II ⊆ ∆I with | II |= 1

Universal Role U ∆I × ∆I

Role Intersection R ⊓ S RI ∩ SI

Role Union R ⊔ S RI ∪ SI

Role Complement ¬R ∆I × ∆I \ RI

Role Inverse R− {(b, a) ∈ ∆I × ∆I | (a, b) ∈ RI}

Transitive Closure R+
⋃

n≥1
(RI)n

Role Restriction R|c RI ∩ (∆I × CI)

Identity id(C) {(d, d) | d ∈ CI}

Teminological

Axioms

Concept Inclusion C ⊑ D CI ⊆ DI

Concept Equality C ≡ D CI = DI

Role Inclusion R ⊑ S RI ⊆ SI

Role Equality R ≡ S RI = SI

Table 1 Some Description Logic Role Constructors, Concept Constructors, and Terminological Aximos

To give examples of what can be expressed in DLs, we suppose that Person and Female are

atomic concepts. Then Person ⊓ Female is DL concept describing, intuitively, those persons that

are female. If, in addition, we suppose that hasChild is an atomic role, we can form the concept

Person ⊓ ∃hasChild, denoting those persons that have a child. Using the bottom concept, we

can also describe those persons without a child by the concept Person ⊓ ∀hasChild.⊥. These

examples show how we can form complex descriptions of concepts to describe classes of objects.

The terminological axioms make statements about how concepts or roles are related to each

other. It is possible to single out definitions as specific axioms and identify terminologies as sets

of definitions by which we can introduce atomic concepts as abbreviations or names for complex

concepts.

An equality whose left-hand side is an atomic concept is a definition. Definitions are used

to introduce symbolic names for complex descriptions. For instance, by the axiom Mother ≡

Woman ⊓ ∃hasChild.Person, we associate to the description on the right-hand side the name

Mother. Symbolic names may be used as abbreviations in other descriptions. If, for example,

we have defined Father analogously to Mother, we can define Parent as Parent≡Mother ⊔

Father.

The sentence ⊤⊑ ∀hasParent.Person expresses that the range of the property hasParent is

the class Person (more technically, if the property hasParent holds between any concept and

another concept, the latter concept must be of type Person).
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