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Abstract. The field of cancer research is now generating vast amounts of data from
a variety of high throughput techniques and these have helped to define cancers
based on their genetic foundations. As this knowledge on the processes and under-
lying genetics of cancer improve, these should be factored back into the research
and analyses conducted by other researchers. Managing this volume of data, of-
ten conflicting, is becoming increasingly challenging for researchers. This work
demonstrates an innovative application of argumentation theory within cancer re-
search by providing a framework to accommodate missing data, address critical
questions and generate hypotheses. The prototype system has been validated to
demonstrate it identifies the same interesting interactions and molecules as re-
searchers, even when certain key data was deliberately withheld from the system.
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1. Introduction

Argumentation theory has seen many applications, including law [1], medicine [2] and
bioinformatics [3,4]. Within this paper we propose another novel application of argu-
mentation in the field of cancer research.

Cancer research generates large volumes of data from an array of different experi-
mental techniques. From this, knowledge of the genetic foundations of cancer have been
established allowing the classification of cancers to be improved [5]. Publicly available
databases [6] also make it possible for researchers to query similar work conducted by
others. With this additional knowledge and access to data come additional requirements
when it comes to analysing research data.

This novel application of argumentation aids the researcher by establishing, within
an environment of conflict and missing data, what interactions and molecules are inter-
esting and would warrant further investigation. This work has been validated by remov-
ing certain data from the system to establish if it would come to the same conclusions as
researchers who were in possession of this data.
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2. Background

2.1. Cancer Research

Breast cancer is the most common cancer amongst woman and is increasing in incidence
[7] and therefore has been the focus of much research work. One of the aims of this
research work is to understand what genes or proteins are associated with larger, more
aggressive cancers that do not respond to conventional treatment and ultimately result
in poorer survival for the patient. Once the relative expression levels of proteins are ob-
tained, these are usually converted into a boolean value to represent the presence of ab-
sence of that protein. For gene data, there are high throughput methods that can allow
for the expression of thousands of genes to be quantified from just one sample, providing
cancer researchers an invaluable glimpse into the genetic foundations of the cancer. This
work [5] has had some success in understanding the differences between breast cancers
and has shown breast cancer to be made up of several sub diseases. This improved clas-
sification of breast cancer has meant that researchers should conduct their analyses and
draw conclusions in the context and knowledge of these sub-types, rather than the more
generic breast cancer population.

2.2. Tissue Banks

Tissue Banks provide an invaluable resource to researchers without which much of the
progress in cancer research would not be possible [8]. Under ethical and NHS Caldicott
Guardian approval, they collect biological samples from patients who are undergoing a
clinical procedure and they are asked to donate various tissue samples that are excess
to any diagnostic requirements. Clinical data is also collected, such as details on their
diagnosis, treatments and other clinical parameters linked to the cancer. This means that
over time the tissue bank will contain thousands of cancer samples with full complemen-
tary data. As patients are unique and diverse individuals, tissue banks need to collect this
associated data so that when a researcher is analysing the data, they can accommodate
for differences such as age within their analyses. Tissue banks therefore become more
than just tissue repositories, they are also an invaluable data repository, even more so
in the current climate of encouraging data sharing. Tissue banks are also well placed to
capture any experimental data generated from the tissue samples given to researchers
and which over time they can make available to other researchers. By doing this a very
comprehensive picture on the makeup of the cancer can be obtained for each patient.
The Tayside Tissue Bank (www.tissuebank.dundee.ac.uk), based in the Dundee Cancer
Centre has been leading many of the national tissue banking initiatives in this way.

2.3. Argumentation

Argumentation can provide a framework for dealing with scenarios where information is
incomplete, inaccurate, often conflicting and where precise modelling may not be possi-
ble. Decisions or conclusions are made on the balance of evidence and after examining
the for and against arguments. These relationships between attack and support were for-
malised in an abstract framework [9], which has become the cornerstone of much of the
other work in the field. Cancer research is riddled with conflict, uncertainty, ever chang-
ing hypotheses and incomplete data and therefore is potentially a very viable candidate



for the application of argumentation. This is exemplified in the use of argumentation
in related fields such as bioinformatics [4,3], medical applications or decision support
[2,10] and prognosis prediction and treatment[11,12]. A common reason within these
applications for the adoption of argumentation is the explanatory power that argumen-
tation offers over more traditional mathematical and AI models. This clarity of why a
decision was reached is particularly important when the decision needs to be communi-
cated and understood by the recipient, as was found in the tool for determining if patients
should be referred for additional treatment [13]. Within that study, it was found that this
explanatory power came at no loss of precision when compared to a mathematical based
prediction system [14]. This need for explanation is also extremely important in the field
of cancer research, in which the output is often known, (for example, whether the patient
lived or died, or whether they had any recurrences of the disease), but the reason it has
occurred is unknown. In the field of bioinformatics, argumentation has been used to help
guide the researcher through a series of questions to help them draw conclusions [4] and
these more recent applications have been based on the Argumentation Service Platform
with Integrated Components (ASPIC) [15] framework. A slight alteration to argumenta-
tion as the sole method is evident in systems that have used argumentation in combina-
tion with more traditional mathematical modelling techniques [11,12]. A similar argu-
mentation framework was designed to ask a series of relevant critical questions from the
output of a mathematical model, it was found to significantly improve the overall predic-
tive ability of the model [3]. In relation to this project, argumentation will be utilised to
help in two areas. The first scenario is to help bridge missing data and in particular for the
presence of a protein when the presence has not been explicitly tested. An argumentation
framework can be used to determine if other data that is present, can provide sufficient
evidence to conclude the missing data should exist. The second scenario is to then pose
critical questions on any subsequent statistical analyses that are performed to ensure any
conclusions are logical.

3. Motivation

Cancer research is becoming an extremely data rich environment and with tissue banks
and data sharing more routine, large repositories of data from the same group of pa-
tients have begun to be collected. For knowledge discovery and for the understanding
of cancer, this is a fantastic opportunity. However, for a researcher, the complexity in
data analyses continues to grow exponentially. With new knowledge and understanding
about cancer and the recognition that cancer even from the same organ is not a single
disease, there are an increasing number of data points and sub-populations that require
consideration, especially if these sub-populations of cancer are believed to behave differ-
ently, use different pathways to develop and grow or respond differently to treatments.
This highlights the importance of context when analysing the data. For the researcher
this increased complexity and number of analyses becomes challenging. A much used
but often criticised approach is to use exhaustive data analysis techniques that simply
test all data points against each other and in all possible contexts and sub-populations.
Although this process will ultimately not miss anything given it tests everything, the sta-
tistical validity of the results can be questioned and the researcher is left to shift through
potentially thousands of results. The analysis approach should be more selective where
the most appropriate tests and hypotheses are tested based on some prior knowledge.



The use of external, publicly available, data could be used as a method to guide data
analyses. Even if the researcher could do the analyses required, there is a problem that
is hard to overcome. They may be aware themselves of contexts that are important, or
have found contexts within the public databases that look interesting, but this data may
not be available within the dataset in which the researcher is conducting the analyses.
This essentially makes any analysis via any conventional method very challenging. To
then further complicate the analysis, as the cancer develops, grows and spreads, different
biological processes and responses may be activated. However, the sample that is used to
conduct the experiment is usually only taken at one point in time. Therefore the expres-
sion levels of genes or proteins can only give the briefest of glimpses into a much longer
and larger process.

All of this provides ample justification for the exploration of an alternative analysis
process that can handle conflicting or missing information, reason over the processes that
are likely to have, or are going to occur, process data from multiple data sources and do so
in a way that is transparent to enable the system to explain to the researcher the analyses
conducted. Argumentation theory was therefore identified as a suitable framework in
which to develop such a system given that it has a proven record within the medical and
bioinformatics field at being able to successfully handle similar scenarios to those found
within cancer research.

4. Architecture

4.1. Databases

Core to the system are several databases that contribute various pieces of data that
can be grouped into two categories. The first is held locally within the Tayside Tissue
Bank (www.tissuebank.dundee.ac.uk), Aperio (www.aperio.com) and breast pathology
database. These provide all the information relating to the samples as well as previously
generated research results. This becomes important when the researcher may not nec-
essarily have the data themselves, but it does exist for the same group of samples that
are being analysed. The final local database to contain directly relevant data is the breast
pathology database. This holds information relating to the patient, such as age, gender,
date of birth and importantly all of the data relating to the cancer, such as the grade,
tumour size, type and any recurrences.

The other set of data is derived from publicly available online databases. Although
this data cannot be used to directly analyse the data generated on the samples, it can
be used to advise and guide the analysis process. (1) The pathway interaction database
(PID) [6] contains causal data on thousands of interactions between various molecules.
Although this data is available via web services, in the first instance, this data will be
downloaded in XML format and stored within a local database. This is to ensure the
structure is compatible with the required queries and also to ensure stability and control
over the dataset during development. (2) Gene expression data, that is available online,
that quantifies the expression levels of thousands of genes from cancer patients. This
data will be processed into a simplified version and stored in a database to allow for
interrogation as required.



Figure 1. Overview of the system components: d1,d2,d3 are database IDs, PID=Pathway Interaction Database

4.2. Argumentation Framework

For the purposes of this work, an extension [16] of the ASPIC [15] framework will be
used that has been implemented in Dundee (Mark Snaith 2012 [title] ). The framework
will be used in two core functions of the analysis. The first will be to establish if there
is sufficient evidence to substitute missing data with that this is available. This is par-
ticularly important in the scenario where a context has been found to be important but
this data is not within the local dataset. The ability to examine the reasoning behind the
decision will enable the system to detect data that could be used as a substitute for the
missing data. The second core function of the argumentation framework will be to pose
critical questions of the completed analyses to establish the credibility and whether the
results are consistent with other projects or previous conclusions. To convert the data
from the databases into ASPIC+ compatible rules, there will be an additional module that
handles the transitions between the databases and the argumentation framework (Figure
1, Stages 4,6,8).



5. Implementation

5.1. Databases to ASPIC+

As rules and premises submitted to ASPIC+ are based on data from external databases,
a structured syntax has been generated to ensure the system can transition between both
ASPIC+ and the databases. There are two premises, one to represent if a molecule exists
and one to represent a data source. A molecule is represented by the ID from the database
and prefixed with a ’m’ (e.g m1). The data source premises is also represented by the the
ID of the database, prefixed with a ’d’ (e.g. d1).

Interactions between molecules are managed by detailing the type of interaction by
keywords: creates; changes; combines; represents; coexpressed. For example, if the PID
has a rule that molecule 1 creates molecule 2, this is represented within ASPIC+ as:
m1 creates m2. This just leaves the situation where a molecule is believed to interfere
with an interaction, this introduces the interferes keyword, which is followed by the
interaction separated by a colon. So if molecule 3 interferes with molecule 1 creating
molecule 2, the syntax would be: m3 interferes:m1 creates m2.

5.2. Data Preprocessing

The data from the external data sources, such as the pathway interaction database (PID)
and the gene array expression data contain a vast amount of static information. Therefore
this data is suitable for pre-processing and conversion into a form that will be more
readily available at runtime. The gene array expression data is essentially a real value
on a scale starting from zero to the tens of thousands. This makes it hard to make any
direct comparisons and so they need to be grouped in some way. The method of using
quartiles was chosen as the most suitable method for the needs of this project. This makes
it possible to ask when patients have gene A expression in the highest quartile, which
other genes are also within the highest quartile. For each gene the values that determine
the boundaries of the quartiles are established. Subsequently for each sample and for that
gene, the expression value is taken and converted to a quartile based on these boundaries.

The other external data is from the PID that contains causal relationships between
molecules. As such, this data will be the core data from which rules will be generated and
entered into ASPIC+. Argumentation schemes have been generated based on the syntax
in 5.1, to represent the causal rules from PID: Creation (Figure 3); Alteration (Figure
4); Combination (Figure 5), alongside each scheme are the associated rules that would
be created based on the syntax described. This data along with the ASPIC+ formatted
rules are stored within a local database, so they can be used to prime ASPIC+ before an
analysis run. A simplified example will be used to demonstrate the various stages, using
a small subset of rules that were extracted from the PID.

5.3. New data submitted and calculating the contexts

All the processing that has occurred to date has been prior to any new analysis process
being initiated. To demonstrate the use of the system a simple example will be used to
go through all the processes involved in Figure 1. For the purpose of this example, the
data to be analysed is a protein called HSPB1 (m101395). As described in Section 3, it



Figure 2. Argumentation scheme for the creation of molecule m1 by molecule m2

Figure 3. Argumentation scheme for the alteration of molecule m5 to molecule m1

Figure 4. Argumentation scheme for the binding of molecule m2 with molecule m5

Table 1. Rules generated from the argumentation schemes

Rules Premises

[r1] d1 =>m101456 creates m101395 m101395

[r2] m101456 creates m101395, m101456 =>m101395 m202413

[r3] d1 =>m101398 changes m101395 d1

[r4] m101398 changes m101395, m101398 =>m101395

is important to understand the contexts when analysing data and for HSPB1 these are
obtained from the PID (Figure 1, Stage 2). The contexts are derived from two interaction
types from within the PID, those that have been responsible for the either the creation or
alteration of protein HSPB1. In this example, m101456 (Estrogen/Estrogen/ER alpha/ER
alpha) creates HSPB1 and m101398 (MAPKAPK2) alters HSPB1 and these are therefore
identified as the contexts required for the analyses. Now that these have been identified
it is required to check if this data is available (Figure 1, Stage 3) by querying for their
existence within either the Tayside Tissue Bank or Aperio databases. In the unlikely event
that all the data is available, the process can move straight to statistical testing (stage
10). However, in this example, this data is not present for the same group of samples
for which we have the HSPB1 data. The only other protein data available, is ER alpha
(m100868) and IGF1R (m201886).

This then becomes the first point in which argumentation can be utilised to aid the
process. As it stands, two contexts have been identified, but as the data does not exist,



Figure 5. Argumentation scheme for the representation of a valid substitution from A) partial data B) gene
expression data

traditional analysis packages would not be able to continue any further testing. ASPIC+
will now be used to to establish if there is any evidence for either ER alpha (m100868)
or IGF1R (m201886) to be used as substitutes for m101456 (Estrogen/Estrogen/ER al-
pha/ER alpha) or m101398 (MAPKAPK2) within the analyses. Table 1 summarises
the rules and the premises that will be used. Two independent queries will be made
within ASPIC+ (Figure 1, Stage 4), for m101456 and m101398. Given the current set
of premises and rules, ASPIC+ cannot conclude that m101456 (Estrogen/Estrogen/ER
alpha/ER alpha) or m101398(MAPKAPK2) can be substituted by the available data. The
only way for the analysis to progress will be if other rules or premises can be generated
and this is explored in the following stage (Figure 1, Stage 6).

5.4. Generating rules from partial data

The data held in PID contains the interaction details of thousands of proteins. Two types
of these interactions can make finding a direct match between local data and that found in
the PID difficult. Combination interactions are when two individual molecules, such as
proteins, bind together to form a new molecule. Therefore to obtain a direct match, local
data must exist for both of the sub-components. In the HSPB1 example m101456 (Estro-
gen/Estrogen/ER alpha/ER alpha), is an example of this combination, with the molecule
constituting of two sub-components, estrogen and ER Alpha. To date, it has not been pos-
sible to use any of the existing data as a substitute for m101456 (Estrogen/Estrogen/ER
alpha/ER alpha), even though one of the sub-components, ER alpha, does exist.

In this scenario, the system attempts to find if a sub-component can be a substitute
for the presence of the combined molecule. There are two situations in which this is
acceptable. The first is when the components that form the combined molecule are always
found together and there is no evidence for anything preventing the combination from
occurring. Unfortunately this rule is not satisfied, as ER alpha and estrogen are found to
be within complex molecules where either are not present.

The second scenario in which ER Alpha could be a substitute for the combined
molecule is when the combined molecule contains molecules which have been defined
as compounds within PID. Although the compound components can be important, the
data generated and used for analysis will almost exclusively be protein data and therefore
making a direct match on the combined molecules containing compound components
extremely rare. It is only once the other avenues have been explored for finding a match
that the system removes any compound components. Once the compound components
have been removed from m101456 (Estrogen/Estrogen/ER alpha/ER alpha) the system
can conclude that ER alpha alone can be a substitute for the combined molecule m101456
(Estrogen/Estrogen/ER alpha/ER alpha).



Table 2. Output from calculating co-expression with IGF1R

MoleculeID Expected Measured Percentage Swing

m101398 87.75 102 12%
m100831 87.75 94 5%
m203224 87.75 107 16%

This is formalised by using the scheme in Figure 5A, which allows the reasoning to
be captured with ASPIC+. This is important when presenting the data to the researcher
as they can interrogate the reasoning behind any of the substitutions. This rule along with
any others that have been generated during this process, are added to the ASPIC+ ruleset
and ASPIC+ is queried for evidence that m101456 (Estrogen/Estrogen/ER alpha/ER al-
pha) or m101398(MAPKAPK2) can be substituted by the available data. Unsurprisingly,
given the inclusion of the rule based on Figure 5A, it can now be concluded that m101456
(Estrogen/Estrogen/ER alpha/ER alpha) can be substituted by m100868 (ER Alpha).
There is still however no evidence to support a substitution for m101398(MAPKAPK2).
There is one last avenue the system will explore to look for alternatives and this is cap-
tured with Figure 1 (Stage 8).

5.5. Generating rules from the Gene Array expression data

The gene array expression data has so far been processed into quartiles but has yet to be
used in any of the analyses. The data is utilised in the scenario where it has been estab-
lished that important context data still cannot be substituted by available data, even once
accounting for partial data. Therefore this represents the last chance to find substitutes
for the missing contexts (Figure1, Stage 8).

The gene array data contains vast amounts of data on the expression levels of thou-
sands of genes. Given this, it is possible to ask questions such as, when the gene IGF1R
is highly expressed, what other genes are also highly expressed. The ability to ask this
question in this scenario is important as it can highlight genes that may be suitable as
substitutes. This process is always left as the last result because as previously mentioned,
the data most likely to be analysed is protein levels and this data is the expression levels
of genes. The reason this data can be useful, is because gene expression is the first in a
multi-step process for the creation of proteins [17] . Therefore any suggested substitu-
tions are valid but come with a lower confidence, therefore this stage of the system is
only reached if the other methods have failed to find substitutes.

To find the substitutes, for each of the data held, apart from HSPB1, the gene array
expression database is queried for genes that are expressed at similar levels. The data
has been transformed into quartiles, therefore the system will look for similarities within
the quartile groups. Using IGF1R as an example, the database is queried for substitute
genes that are expressed within quartiles 2-4 at the same time as IGF1R. If there was no
association between the genes, it would be expected that a substitute gene would have an
even representation of the quartile groups within the IGF1R 2-4 quartile group. In the ex-
ample, IGF1R has 117 cases that fall within quartiles 2-4. If everything were distributed
evenly, geneA should have 75% or 88 cases within quartiles 2-4. If there are more than
88 cases within quartiles 2-4 for Gene A, it would indicate some correlation between
the expression levels of gene A and IGF1R. It was decided that for the difference to be
considered significant, there should be a 10% increase. As an example, Table 2 shows the



Table 3. Total input into ASPIC+ for processing

Rules Premises

[r1] d1 =>m101456 creates m101395 m101395

[r2] m101456 creates m101395, m101456 =>m101395 m100868

[r3] d1 =>m101398 changes m101395 m201886

[r4] m101398 changes m101395, m101398 =>m101395 d1

[r5] d3 =>m100868 represents m101456 d2

[r6] m100868 represents m101456, m100868 =>m101456 d3

[r7] d2 =>m201886 coexpressed m101398

[r8] d2 =>m201886 coexpressed m203224

[r9] m201886 coexpressed m101398, m201886 =>m101398

[r10] m201886 coexpressed m203224, m201886 =>m203224

output from the process, detailing the expected number versus those actually within quar-
tiles 2-4 and the percentage swing. From this, it can be concluded that IGF1R can also be
used as a substitute for m101398 and m203224. Therefore a new rule can now be entered
into ASPIC+, using the argumentation scheme detailed in Figure 5B. This combined with
all the other previous processing steps, involves the rules and premises set out in Table
3 now being present with the ASPIC+ framework and the query for the contexts can be
re-run a final time (Figure 1, Stage 9). Now all the contexts can be substituted by data
available, by using partial data to represent m101456 (Estrogen/Estrogen/ER alpha/ER
alpha) and co-expressed data to represent m101398 (MAPKAPK2). As the system has
now established the contexts and any substitutes, the system moves on to creating and
running the statistical testing plan.

5.6. Developing the statistical testing plan and running the tests

Now that the contexts and substitutes have been established, the process of determining
what tests should be conducted (Figure 1, Stage 10) and what data to use is relatively
straightforward and based on previously implemented work [18]. The main difference
here, however, is that the exhaustive and repetitive nature of the testing has been removed
and the previous steps have formed very specific tests to run. The focus of this system
is on patient survival after diagnosis as an end point which limits the statistical tests,
to test for significance the Log Rank test is used and the Kaplan Meier method used to
graphically represent the survival data. Given these restrictions the number of statistical
tests to be run will be small, however some demanding questions are asked, Test 1 asks
whether HSPB1 results in any change in survival when created by ER Alpha. Test 2,
asks whether HSPB1 that has been created by ER Alpha and then subsequently altered
by MAPKAPK2 results in a change in survival.

As with any statistical tests, a cut off must be decided to indicate significant results
within the system. A p value below 0.1 as is marked as ’worthy of further analysis’,
below 0.05 as ’significant’ and below 0.01 as ’highly significant’. Test 2 produces a p
value of 0.08 and therefore within the ’worthy of further analysis’ group. As such, further
tests are conducted against other standard predictors of survival, such as tumour size,



tumour grade and whether the tumour has spread to the lymph nodes. The system uses
the results of these to ask some critical questions of the previous results and therefore
establishing the strength of the previous significance.

6. Evaluation and Future Work

This new method of testing clinical research data can bring several benefits. The ques-
tions that were asked and statistically tested were very specific, limited in numbers and
intelligently based on previous knowledge from publicly available databases into the the
analysis process, providing valuable context to the researcher. The real distinguishing
feature is the ability to handle missing or incomplete data. This allows the researcher to
make informed decisions on whether the results bear any real significance or importance.

The data that was used for this example came from a real example in which re-
searchers had been struggling to understand the results. The protein HSPB1 was being
examined and analysed using an exhaustive data analyses program [18]. It found nu-
merous associations, within numerous sub-populations and combinations of these. Data
was also available on the altered version of HSPB1, and the same tests as the normal
form of HSPB1 were conducted, further adding to the complexity. This left the research
team with a large amount of work to establish whether these significant results made any
sense, a process that spanned many months. It is from this work that the example in this
paper was generated. However, the system was deliberately given a handicap, the data on
the altered version of HSPB1 was withheld. The intention was to see if the system could
replicate the conclusions made by the research team, even when it had less data available
than the research team.

The system found that the basic form of HSPB1 was not significant (p=0.56) in the
context of ER Alpha. However, it did find that this conclusion changed when looking at
the altered form of HSPB1 within the context of ER Alpha, as it was marked as ’worthy
of further investigation’ (p=0.08). This was the same conclusion as the research team
who were in possession of the complete dataset. This clearly demonstrates the potential
power of the system to deliver clear and concise information to researchers, to either
confirm or generate new hypotheses, in an environment of missing and incomplete data.

Further work is required to refine the processes and to complete the system to a fully
operational state. In particular the gene expression mining section may require further
testing to check the validity of rules generated. Additions will also be included to increase
and improve the critical questions asked after the completion of the analysis. The system
will be tested in other similar scenarios where the conclusions made by the system can
be compared to those made by research teams before it is fully utilised on previously
untested datasets in which the conclusions are yet to be made.
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