On Logical Reifications of the Argument Interchange
Format

Floris Bex** Sanjay Modgil® Henry Prakken® Chris Reed?

4School of Computing, University of Dundee
bDepartment of Informatics, King’s College London
¢Department of Information and Computing Sciences, Utrecht University &
Faculty of Law, University of Groningen

Abstract

The Argument Interchange Format (AIF) has been devised in order to support the inter-
change of ideas and data between different projects and applications in the area of com-
putational argumentation. The AIF presents an abstract ontology for argumentation which
serves as an interlingua between various reifications that consist of more concrete argumen-
tation languages. In this paper, we aim to give a logical reification of the AIF ontology, by
defining translations between the ontology’s language and the formal ASPIC™ framework
for argumentation. We thus lay foundations for interrelating formal logic-based approaches
to argumentation captured by the general ASPIC™ framework, and the wider class of AIF
reifications, including those that are more informal and user orientated.
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1 Introduction

Argumentation is a rich research area, which uses insights from such diverse disciplines as ar-
tificial intelligence, linguistics, law and philosophy. In the past few decades, Al has developed
its own sub-field devoted to computational argument [4], in which significant theoretical and
practical advances are being made. This fecundity, unfortunately, has a negative consequence:
with many researchers focusing on different aspects of argumentation, it is increasingly difficult
to reintegrate results into a coherent whole. To tackle this problem, the community has initiated
an effort aimed at building a common core ontology for computational argument, which will
support interchange between research projects and applications in the area: the Argument Inter-
change Format (AIF) [12, 26]. The AIF’s main practical goal is to facilitate the research and de-
velopment of various tools for argument manipulation, argument visualization and multi-agent
argumentation [12]. In addition to this, the AIF also has a theoretical goal, namely to provide an
abstract ontology that encapsulates the common subject matter of the different (computational,
linguistic, philosophical) approaches to argumentation.

A weakness of the AIF ontology is that it does not fully support results from computational
theories of argument; while the work that has discussed the AIF to date (e.g. [27, 28]) deals
with issues which are important for computational argument, such as argumentation schemes
and dialogues, the examples and the general flavour of this work clearly stem from philosophi-
cal argumentation theory. Most importantly, the relation between the AIF and the various logics
for argumentation [24] and their associated argumentation-theoretic semantics (e.g. [13]) has
not been fully clarified (except in [7], of which the present paper is an extension). In this paper,
we aim to make this relation explicit by showing how the AIF ontology can be reified (i.e.,
expressed in a more concrete language) in a logical framework for argumentation. More specif-
ically, we propose a set of translation functions between the AIF ontology and the ASPIC™
framework [22]. Thus, the AIF ontology is formally grounded in a general logical framework
that instantiates the argumentation-theoretic semantics of [13] and at the same time the ASPIC™
framework is placed in the wider spectrum of not just formal but also philosophical and linguis-
tic approaches to argumentation.

The ASPIC* framework integrates ideas from several approaches in the literature and
adopts an intermediate level of abstraction between the abstract approach to argumentation in-
spired by [13] and more concrete logics such as those developed in [6, 15, 23]. The framework
has recently been extended, yielding the E-ASPIC* framework [18], which not only instanti-
ates Dung’s abstract framework [13] but also its recent extension to accommodate argumenta-
tion about preferences [17]. Our choice of this framework is motivated by the fact that it has
been shown [22] to subsume, or at least closely approximate, other important work on logics for
argumentation such as [10, 34], and more recently ([19]) classical logic approaches to argumen-
tation [6], including those that accommodate preferences [3, 2]. Thus, a translation of AIF to
the language of ASPIC™ provides us with information that can be easily used by other systems
for computational argumentation. Furthermore, the translation functions themselves can in a
sense be viewed as generic, in that they can be used to translate AIF to any logical framework
that uses similar terminology and concepts to the ASPIC™ framework.

The AIF ontology is purely intended as a language for expressing arguments and these ar-
guments have to be translated to the languages of individual reifications if we want to process
them. For example, [25] formalised the AIF ontology in Description Logic, which allows for
the automatic classification of schemes and arguments. Various different reifications can easily
share data because they are all based on the core AIF ontology, which acts as an interlingua
(or intermediary language). The AIF-ASPIC™ reification developed here further adds to the
set of reifications that can engage with AIF argument resources. More specifically, because the
ASPIC™ framework is explicitly linked to the argumentation-semantics of [13], we can calcu-
late the acceptability of arguments. Using the AIF as an interlingua we can, for example, use
the ASPIC™ framework to evaluate the acceptability of arguments constructed in an argument



diagramming tools such as Araucaria [29] or Rationale [5]. This information about arguments’
acceptability can then be fed back to other AIF-based tools, such as the visualiser for abstract
argumentation frameworks OvaGen' [31], again using the AIF as an interlingua. The possi-
bility is thus created for computational models of argumentation to engage with large corpora
of natural argument that have been constructed in diagramming tools (e.g. AraucariaDB [29],
ArgDB [27]).

The rest of this paper is organized as follows. In Section 2 we discuss the core AIF ontology.
We give a specification and discuss some issues regarding conflict and preference, which were
only marginally touched upon in previous work. Section 3 discusses the relevant parts of the
ASPICT framework as set out by [22], and the more recent extension E-ASPIC™T in [18]. In Sec-
tion 4 the connection between the AIF ontology and the basic ASPIC™ framework is formalized.
Sections 4.1 and 4.2 respectively formalise the translation from AIF to ASPIC™ and vice versa,
and section 4.3 presents formal results with respect to the information-preserving properties of
the translation functions. Section 5 then similarly shows two way translations between the AIF
ontology and the extended E-ASPIC* framework of [18], and shows the information-preserving
properties of the translation functions. In Section 6, we briefly discuss issues that arise when
translating AIF representations of arguments constructed in an argument diagramming tool (Ra-
tionale [5]) to the ASPIC™ framework, in order to evaluate the acceptability of the diagrammed
arguments. Section 7 concludes the paper and discusses related and future research. Finally, the
appendix contains proofs for the formal results with respect to the identity-preserving properties
of the translation functions.

2 The Argument Interchange Format

The AIF is a communal project which aims to consolidate some of the defining work on com-
putational argumentation [12]. Its aim is to facilitate a common vision and consensus on the
concepts and technologies in the field so as to promote the research and development of new
argumentation tools and techniques. In addition to practical aspirations, such as developing a
way of interchanging data between tools for argument manipulation and visualization, a com-
mon core ontology for expressing argumentative information and relations is also developed.
The purpose of this ontology is not to replace other (formal) languages for expressing argument
but rather to serve as an abstract interlingua that acts as the centrepiece to multiple individual ar-
gument languages such as, for example, the formal ASPIC™ framework [22], [25]’s Description
Logic formalisation and the format used by the Rationale argument visualization programme
[5]. These individual languages can be connected to the AIF core ontology by way of sym-
metrical translation relations between elements of the ontology’s language and elements of the
format’s language. Ideally, individual argumentation formats use the core AIF ontology as their
starting point, thus making the translation easier (as is the case for [25]’s DL formalisation). In
the case of an already existing format, the translation is less trivial and it may not be possible to
translate all elements of the format’s language to the ontology’s language and vice versa, as we
will demonstrate for the ASPICT framework in this paper. Note that direct translations between
argumentation formats are optional as they are not needed if we have the AIF ontology as an
interlingua.

A common ontology for argumentation is interesting for a number of reasons. On the prac-
tical side, the AIF as an interlingua drastically reduces the number of translation functions that
are needed for the different argumentation formats to engage with each other; only translation
functions to the core AIF ontology have to be defined (i.e., n instead of n? functions for n argu-
mentation formats). Furthermore, the central ontology acts as a conceptual anchoring point for
the various formats, which improves the exchange of ideas between them. This anchoring point
could provide a foundation for more formal characterisations of meaning within the different
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frameworks. By providing a strict graph-theoretic representation, the AIF provides a frame of
reference accessible to theories of argument founded upon first order logics, higher order and
non-classical logics, and theories of argument developed in epistemological contexts, linguistic
contexts, and theories applied in pedagogy, law, and so on.

A common frame of reference, however, does not obviate the problem of commonness
of meaning, for it still presupposes that the developers of the various argumentation theories
have some sort of common understanding of the AIF core ontology. In order to promote this
common understanding, the core ontology should be kept as basic as possible and the various
elements of the ontology should be clearly defined. [26] note that due to the nature of the
AIF project it is unavoidable that the ontology — and thus its common interpretation — will
change over time. However, by having more translations and thus more references available the
common understanding of the AIF will be further improved. Furthermore, the AIF project does
not aim to tie applications or research projects to a particular format or interlingua. In some
cases, for example when one wants two logical systems, it might be more sensible to provide
a direct translation between the two systems which focuses on the formal properties of those
systems (as is the case in, e.g., [33]). In a sense, the AIF ontology can be understood as a tool
for development of interchanges because it can, as it were, provide a meeting point or forum
for various researchers and application developers to define translation functions that facilitate
interchange.

2.1 The AIF Core Ontology

The AIF core ontology falls into two natural halves [27, 26]: the Upper Ontology and the Forms
Ontology. The Upper Ontology defines the basic building blocks of AIF argument graphs, types
of nodes and edges (in a sense, it defines the “syntax” for our abstract language). The Forms
Ontology allows for the conceptual definition of the elements of AIF graphs, such as premises,
inference schemes, exceptions and so on (it provides, for want of a better term, a “semantics” for
the graph). Thus, the nodes defined in the Upper Ontology can be used to build argument-graphs
at the object level (see Definition 2.1). The nodes in these graphs then fulfil (i.e. instantiate)
specific argumentation-theoretic forms in the Forms Ontology.

Figure 1 visualises the main specification of the AIF ontology. The white nodes define
the classes (concepts) in the Upper Ontology whilst the grey nodes define those in the Forms
Ontology. Different types of arrows denote different types of relations between the classes in
the ontology. For example, the class of inference schemes is a subclass of the class of schemes,
an element of the class of RA-nodes fulfils an element of the class of inference schemes and
elements of the class of inference schemes always have associated elements in the premise
class. The full AIF specification? includes further constraints on the construction of argument-
graphs, that is, on the possible combinations of different nodes. These constraints are listed in
Definition 2.1. Note that the graph in Figure 1 should not be confused with an AIF argument
graph as defined in Definition 2.1 and shown in the rest of this paper (Figures 2 — 8): Figure 1
shows the structure of the ontology as a graph (i.e. a semantic network, a fairly common way to
express such information) whilst the argument graphs in Figures 2 — 8 show actual arguments
in the language of this ontology.

2.2 The Upper Ontology: building argument graphs

The AIF Upper Ontology places at its core a distinction between information, such as propo-
sitions and sentences, and schemes, general patterns of reasoning such as inference or conflict.
Accordingly, the Upper Ontology describes two types of nodes for building argument graphs:
information nodes (I-nodes) and scheme nodes (S-nodes). Scheme nodes can be rule application

2 Available in various formats (e.g. OWL, DOT, SQL) on http: //www.arg.dundee.ac.uk/aif.
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Figure 1: The AIF specification

nodes (RA-nodes), which denote specific inference relations, conflict application nodes (CA-
nodes), which denote specific conflict relations, and preference application nodes (PA-nodes),
which denote specific preference relations. As [12] notes, nodes can have various attributes
(e.g. creator, date). For current purposes, we assume that a node consists of some content
(i.e. the information or the specific scheme that is being applied) and some identifier.

Nodes are used to build an AIF argument graph (called argument networks by [27, 26]).
The choice of graphs as the AIF ontology’s main representational language seems to be the
most intuitive way of representing argument in a structured and systematic way without the
formal constraints of a logic [12]. Furthermore, the graphical representation of arguments fits
well with many textbook accounts of argument structure (see, for example, [14, 16, 34, 21])
and allows for the easy visualization of relations between nodes. However, the choice of the
representational language is in some ways arbitrary and some AIF specifications [25] do not
explicitly opt for a graph-based language.

An AIF argument graph can be defined as follows:

Definition 2.1 [AIF graph]
An AIF argument graph G is a simple digraph (V, E') where

1. V=TURAUCAU PA is the set of nodes in G, where I are the I-nodes, RA are the
RA-nodes, C'A are the CA-nodes and P A are the PA-nodes; and

2. ECV x V\ I x I is the set of the edges in G; and
3. if v € V' \ I then v has at least one direct predecessor and one direct successor; and

4. if v € RA then v has at least one direct predecessor that fulfils the form premise and
exactly one direct successor that fulfils the form conclusion; and



5. if v € PA then v has exactly one direct predecessor v; that fulfils the form preferred
element and exactly one direct successor v; that fulfils the form dispreferred element,
where v; # v;; and

6. if v € CA then v has exactly one direct predecessor that fulfils the form conflicting
element and exactly one direct successor that fulfils the form conflicted element.

We say that, given two nodes v1,v9 € V, vy is a predecessor of vy and vs is a successor of
v if there is a path in G from vy to ve, and vy is a direct predecessor of vo and vs is a direct
successor of vy if there is an edge (v1,v2) € E. A node v is called an initial node if it has no
predecessor.

Condition 2 states that I-nodes can only be connected to other I-nodes via S-nodes, that is,
there must be a scheme that expresses the rationale behind the relation between I-nodes. S-
nodes, on the other hand, can be connected to other S-nodes directly (see, e.g., Figures 3, 4).
Condition 3 ensures that S-nodes always have at least one predecessor and successor, so that (a
chain of) scheme applications always start and end with information in the form of an I-node.
Conditions 3 — 6 state specific constraints on the argument graph which are determined by
the Forms Ontology (Section 2.3): inference applications (RA-nodes) always have at least one
premise node and at most one conclusion node (4), preference applications are always between
two distinct nodes of the forms preferred element and dispreferred element (5) and conflict
applications always have exactly one conflicting element node and one conflicted element node.

In [12, 27], it is argued that edges in a graph need not be typed and that the meaning of
edges can always be inferred when necessary from the types of nodes they connect. There are,
however, some exceptional situations. For example, an edge between an RA-node and a PA-
node can denote that the preference (PA-node) is the conclusion of the inference (RA-node), or
it can denote the situation where the inference is preferred to another inference (when there is
another edge from the PA-node to this other RA-node). In such a case, we need to know which
forms are fulfilled by the nodes. That is, is the RA-node a preferred element w.r.t. the PA-node,
or is the PA-node a conclusion w.r.t. the RA-node instead? In the following section, we will
briefly discuss the Forms Ontology and how it solves such ambiguities.

2.3 The Forms Ontology: defining reasoning schemes

The Forms Ontology defines the various schemes and types of statements commonly used in
argumentation. In this paper, we will leave the exact structure of the Forms ontology largely
implicit and simply assume the Forms Ontology is a set F that contains the relevant forms
and schemes. Nodes in the argument graph fulfil forms in F. Here, we do not commit to any
particular formalisation of how fulfilment works; instead, we will simply state that a node v in
an argument graph fulfils a form f € .3 The cornerstones of the Forms Ontology are schemes.
In the AIF ontology, inference, conflict and preference are treated as genera of a more abstract
class of schematic relationships [9], which allows the three types of relationship to be treated in
more or less the same way, which in turn greatly simplifies the ontological machinery required
for handling them. Thus, inference schemes, conflict schemes and preference schemes in the
Forms Ontology embody the general principles expressing how it is that ¢ is inferable from
p, p is in conflict with ¢, and p is preferable to g, respectively. The individual RA-, CA- and
PA-nodes that fulfil these schemes then capture the passage or the process of actually inferring
q from p, conflicting p with ¢ and preferring p to g, respectively.

Inference schemes in the AIF Forms ontology are similar to the rules of inference in a logic,
in that they express the general principles that form the basis for actual inference. They can be

3[27] define the Forms Ontology as a graph of so-called form-nodes (F-nodes) and denote fulfilment through specific
edges connecting, for example, S-nodes and F-nodes. [25] define schemes as combinations of classes of statements in
OWL Description Logic (DL) and let the machinery of DL handle fulfilment.



deductive (e.g. the inference rules of propositional logic) or defeasible (e.g. [36]’s argumen-
tation schemes) and accordingly, we assume that F contains separate subsets of deductive and
defeasible inference schemes. As can be seen in Figure 1, both types of inference scheme have
some premises, containing descriptions of the scheme’s premises, and a conclusion, describing
the scheme’s conclusion. If desired, more elements of the scheme can be defined in the Forms
Ontology, such as presumptions or exceptions for defeasible schemes [27].

One example of an inference scheme is that of Defeasible Modus Ponens [22, 23], of which
the premises are the minor premise  and the major premise ¢ ~» ¥ (here, ~ is a connective
standing for defeasible implication) and the conclusion is 1), where ¢ and ¢ are variables.
Figure 2 shows an actual argument in the language of the AIF ontology based on this scheme.
The type of the form that each node fulfils is indicated next to the nodes. The actual application

of the scheme is represented by ra2.
n conclusion
@ Defeasible Modus
Ponens
[ p J [p»qj premises

Figure 2: An AIF argument-graph

In Figure 2, the fact that ¢ is inferable from p is represented in the object layer as the
(defeasible) conditional p ~» ¢. In line with a long tradition in argumentation theory and
nonmonotonic logic (e.g. [36, 15, 30]), such specific knowledge can be modelled as inference
rules itself, that is, as an inference scheme in F. Take, for example, the inference scheme for
Argument from Expert Opinion [36]:

Scheme for Argument from Expert Opinion

premises: E is an expert in domain D, E asserts that P is true, P is within D;
conclusion: P is true;

assumptions: E is a credible expert, P is based on evidence;

exceptions: F is not reliable, P is not consistent with the testimony of other experts.

An argument based on this scheme is rendered in Figure 3. Thus, specific (but still generaliz-
able) knowledge can be modelled in the AIF in a principled way using argumentation schemes,
for which we can assume, for example, a raft of implicit assumptions which may be taken to
hold and exceptions which may be taken not to hold. Note that the AIF ontology itself does not
legislate which schemes are in F and the exact structure of these schemes; rather, this depends
on the inference rule schemes or argumentation schemes that a particular reification format uses.

Like inference, conflict is also generalizable. General conflict relations, which may be based
on logic but also on linguistic or legal conventions, can be expressed as conflict schemes in F.
All conflict schemes have two elements: one element that “conflicts” and another one that “is
conflicted”; symmetry is not automatically assumed so that for a symmetrical conflict a scheme
has to be applied twice.*

As an example of a conflict scheme, take the scheme for Conflict From Expert Unreliability,
which states that that the fact that an expert is unreliable is in conflict with the inference based
on the Expert Opinion scheme. In other words, the conflicting element of this scheme is ‘E
is not reliable’ and the conflicted element is the Scheme for Argument from Expert Opinion.

4Roughly, the conflicting element can be seen as the proposition that attacks and the conflicted element as the propo-
sition that is attacked. However, because the notion of “attack” already has its own meaning in theories of computational
argumentation, we are here forced to use the (rather cumbersome) terms conflicting element and conflicted element.



Note that (Figure 1) exceptions are also conflicting elements. This is also the case here: the
exception of the Expert Opinion inference scheme (E is not reliable) is the conflicting element
of the Expert Reliability conflict scheme. Figure 3 shows the application of the conflict scheme
Expert Unreliability, which here attacks the application of the Expert Opinion inference scheme
as represented by the node ral2 (i.e. the fact that the expert e; is not reliable is in conflict with
the fact that p is inferred from the premises).

conclusion
. Expert conflicting
Expert conflicted  ynrejjability element
0 p ] element o1 s not
inion :
’ reliable

premises
e; e;isan pis
asserts p expert in d; ind;

Figure 3: Conflict from Unreliability

While inference and conflict allow us to build arguments and provide counterarguments, in
many contexts a choice needs to be made as to which of the arguments is better or stronger. This
can be expressed using preferences. In the AIF ontology, preference follows the now-familiar
pattern that inference and conflict also follow: we assume a set of preference schemes in F,
which express principles for why certain (types of) information or schemes are preferable to
others. A preference scheme contains a preferred element, the information or scheme that is
preferred, and a dispreferred element, the information or scheme that the former is preferred to.

Preference schemes can define preferences between other schemes, for instance, inference
schemes. As an example, consider an inference scheme for general knowledge [8], with as its
premise ‘It is general knowledge that P’ and its conclusion‘P’. Now, we might want to say
that, in general, arguments based on expert opinion are preferable to those based on general
knowledge. This can be represented as a preference scheme with as its preferred element the
inference scheme for Expert Opinion and as its dispreferred element the inference scheme for
General Knowledge. The preference scheme can then be applied as in Figure 4. Notice that
because the scheme expresses that generally, inferences based on Expert Opinion are preferable
over inferences based on General Knowledge, then in this case the actual inference based on the
Expert Opinion scheme (ral2) is preferred over the inference based on the General Knowledge
scheme (ral3). This example shows that a Forms Ontology is needed to disambiguate some of
the elements of more complex graphs. For example, the table of informal semantics for edges
in [27] says that an edge between an RA-node and a PA-node denotes ‘inferring a conclusion
in the form of a preference application’. However, in Figure 4, there is an edge from ral2 to
pall which stands for something different, namely that ral2 is an inference used in preference
to some dispreferred element.

3 Abstract Argumentation and the ASPIC™ Framework

The framework of [22] further develops the attempts of [1, 11] to integrate within Dung’s ab-
stract approach [13]’s the work of [20, 35, 23] on rule-based argumentation.

A Dung abstract argumentation framework assumes a given set of arguments and a binary
attack relation between arguments, and then defines various ways to identify subsets of argu-
ments (‘extensions’) that are in some sense acceptable. Dung abstracts from the structure of
arguments and the nature of the attack relation, assuming that these are defined by some un-
specified logical theory. Its level of abstraction, however, precludes giving guidance so as to
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Figure 4: Preference between inferences

ensure that the arguments of the instantiating theory that are identified as being acceptable,
satisfy intuitively rational properties. Hence, the ASPIC framework of [1] adopted an interme-
diate level of abstraction, providing abstract accounts of the structure of arguments, the nature
of attack, and the use of preferences. [11] then formulated consistency and closure postulates
that cannot be formulated at Dung’s fully abstract level, and showed these postulates to hold
for a special case of ASPIC; one in which preferences were not accounted for. More recently,
ASPIC™* [22] generalised ASPIC and showed that the postulates were satisfied when applying
preferences. The significance of this work is that ASPICT captures a broad range of instantiat-
ing logics and argumentation systems, extending those captured by ASPIC (e.g., to additionally
capture assumption-based argumentation [10] and systems using argument schemes). Further-
more, [19] has recently adapted ASPIC™ to capture classical logic approaches to argumentation
[6], including those that accommodate preferences [3, 2].

The ASPICT framework as defined in [22] assumes an unspecified logical language and
defines arguments as inference trees formed by applying deductive (or ‘strict’) and defeasible
inference rules. The notion of an argument as an inference tree naturally leads to three ways of
attacking an argument: attacking an inference, attacking a conclusion and attacking a premise.
Preferences may then be used to identify which attacks succeed as defeats, so that one obtains
three corresponding kinds of defeat: undercutting, rebutting and undermining defeat. To char-
acterize them, some minimal assumptions on the logical object language must be made, namely
that certain well-formed formulas are a contrary or contradictory of certain other well-formed
formulas. Apart from this the framework is still abstract: it applies to any set of inference
rules, as long as it is divided into strict and defeasible ones, and to any logical language with
a contrary relation defined over it. The framework also abstracts from whether inference rules
are domain-specific (as in e.g. default logic and logic programming) or whether they express
general patterns of inference, such as the deductive inferences of classical logic or defeasible
argumentation schemes. The arguments and defeats defined by any logical formalism captured
by the ASPIC™ framework, then instantiate a Dung framework (DF), so that the acceptable
arguments can then be evaluated.

Recently, [18] have extended ASPIC™ so as to instantiate [17]’s extension of Dung’s abstract
approach. Modgil incorporates a second attack relation allowing for the possibility of attacks
on attacks in addition to attacks on arguments. Intuitively, if argument C' claims that argument
B is preferred to argument A, and A attacks B, then C' undermines the success of A’s attack on
B (i.e., A does not defeat B) by attacking A’s attack on B. Since arguments attacking attacks
can themselves be attacked, Modgil’s Extended Argumentation Frameworks (EAFs) can fully
model argumentation about whether one argument is preferred to another.

In the rest of this section, we first briefly review Dung’s abstract approach and Modgil’s
extension of this approach. We then review [22]’s ASPIC* framework with fixed preferences
and the modified version [18] that instantiates EAF's. For both versions, translations from and
into the AIF will be defined in Section 4.



3.1 Abstract Argumentation Frameworks

A Dung argumentation framework (DF) [13] is a tuple (A, C), where C C A x A is an attack
relation on the arguments A. An argument X € A is said to be acceptable w.r.t. some S C A
iff VY s.t. (Y, X) € C implies 37 € S s.t. (Z,Y) € C. A DF’s characteristic function F is
defined such that for any S C A, F(S) = {X|X is acceptable w.r.t. S }. We now recall Dung’s
definition of extensions under different semantics:

Definition 3.1 Let (A, C) be a DF, S C A be conflict free (i.e., VX,Y € S,(X,Y) ¢ C):

S is an admissible extension iff S C F(S); S is a complete extension iff S = F(S); S is
a preferred extension iff S is a set inclusion maximal complete extension; .S is a grounded
extension iff S is a set inclusion minimal complete extension; .S is a stable extension iff S is
preferred and VY ¢ S, 3X € Ss.t. (X,Y) e C.

For s € {complete, preferred, grounded, stable}, X € A is sceptically justified under the s
semantics, if X belongs to all s extensions, and credulously justified if X belongs to at least
one s extension.

Extended Argumentation Frameworks (EAFs) [17] extend DFs to include a second attack
(pref-attack) relation:

Definition 3.2 [EAF] An EAF is a tuple (A, C, D), where (A,C)is a DF, D C A x C, and if
(Z, (X, Y),(Z',(Y,X)) e Dthen(Z,Z"),(Z',Z) € C.

Note the constraint on any Z, Z', where given that they respectively pref-attack (X,Y)
and (Y, X), then they express contradictory preferences (Y is preferred to X, respectively X
is preferred to Y) and so themselves symmetrically attack each other. Modgil then defines
modified notions of conflict free-ness and acceptability, and then, with the exception of the
grounded semantics”, defines extensions and justified arguments, as in Definition 3.1 (we refer
the reader to [17] for the technical details).

3.2 ASPIC"with fixed preferences

The basic notion of the ASPIC™ framework is that of an argumentation system.

Definition 3.3 [Argumentation system] An argumentation systemis atuple AS = (£, 7, R, <)
where

e [ is alogical language,
e ~ is a contrariness function from £ to 2%

e R =Ry URyis aset of strict (R,) and defeasible (R ;) inference rules such that R N
a=0,

e < is a partial preorder on Rg4 (where, as usual, r; < r; denotes that (r;,7;) €<,

(rj,7i) €.

Definition 3.4 [Logical language] Let £, a set, be a logical language. If ¢ € 1) thenif ¢ ¢ @
then ¢ is called a contrary of 1, otherwise ¢ and ¢ are called contradictory. The latter case is
denoted by ¢ = — (i.e., ¢ € Y and ) € ©).

)

3Since an EAF’s characteristic function is only monotonic for a special class of hierarchical framework, [17] defines
the grounded extension of arbitrary EAF's as the fixed point obtained by iterative application (starting with () of the
characteristic function.



Arguments are built by applying inference rules to one or more elements of £. Strict rules are
of the form ¢1, ..., v, — ¢, defeasible rules of the form ¢4, ..., ¢, = ¢, interpreted as
‘if the antecedents 1, . . ., ¢, hold, then necessarily, respectively presumably, the consequent
@ holds’. As is usual in logic, inference rules can be specified by schemes in which a rule’s
antecedents and consequent are contain metavariables ranging over £ [15, 30]. For instance
[22], the rule scheme {, p ~» ¥ = 1 (for all p,1» € L)} denotes the set of all Defeasible
Modus Ponens inferences in R 4.

Arguments are constructed from a knowledge base, which is assumed to contain three kinds
of formulas.

Definition 3.5 [Knowledge bases] A knowledge base in an argumentation system (£, ~, R, <)
is a pair (K, <) where KL C £ and <’ is a partial preorder on K\ K, (where, as usual, k; <’ k;
denotes that (k;, k;) €</, (k;,k;) ¢<'). Here K = K,, U K, U K, where these subsets of K
are disjoint and:

e /C, is a set of (necessary) axioms. Intuitively, arguments cannot be attacked on their
axiom premises.

e [C, is a set of ordinary premises. Intuitively, arguments can be attacked on their ordinary
premises, and whether this results in defeat must be determined by comparing the attacker
and the attacked premise (in a way specified below).

o [C, is a set of assumptions. Intuitively, arguments can be attacked on their ordinary as-
sumptions, where these attacks always succeed.

The following definition of arguments is taken from [35], in which for any argument A, the
function W £ returns all the formulas in A; Prem returns all the formulas of /C (called premises)
used to build A, Conc returns A’s conclusion, Sub returns all of A’s sub-arguments, Rules
returns all inference rules in A and TopRule returns the last inference rule used in A.

Definition 3.6 [Argument] An argument A on the basis of a knowledge base (K, <’) in an
argumentation system (£, ~, R, <) is:

1. ¢ if ¢ € K with: Prem(A4) = {p}; WEf(A) = {¢}; Conc(4) = ¢; Sub(4) = {¢};
Rules(A) = 0;

2. Ay, ... A, ==y if Ay, ..., A, are arguments such that there exists a strict/defeasible
rule Conc(Ay),...,Conc(A4,) =/= ¢ in Ry/Rq.
Prem(A) = Prem(A4;)U... UPrem(4,),
WEf(A) = WEf(Aq) U.. . UWEE(A,) U{y},
Conc(A) = 1),
Sub(A) = Sub(A4;)U...USub(4,)U {4}
Rules(A) = Rules(A;)U...URules(A,) U {Conc(A;y),...,Conc(4,,) =/= ¢}

Furthermore, DefRules(A) = Rules(A4) \ Rs. Then A is: strict if DefRules(4) = 0;
defeasible if DefRules(A) # 0; firm if Prem(A) C K,,; plausible if Prem(A) € K.

The framework assumes a partial preorder < on arguments, such that A < B means B is
at least as ‘good’ as A. A < B means that B is strictly preferred to A, where < is the strict
ordering associated with <. The argument ordering is assumed to be ‘admissible’, i.e., to satisfy
two further conditions: firm-and-strict arguments are strictly better than all other arguments that
are not strict and firm, and a strict inference cannot make an argument strictly better or worse
than its weakest proper subargument. In this paper we assume that the argument ordering is
defined in terms of the orderings on the elements of R4 and K \ K, (given in Definitions 3.3
and 3.5). Because of space limitations we refer to [22] for two example definitions of argument
orderings. The notion of an argument ordering is used in the notion of an argumentation theory.
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Definition 3.7 [Argumentation theories] An argumentation theoryis atriple AT = (AS, KB, <
) where AS is an argumentation system, KB is a knowledge base in AS and < is an admissible
ordering on the set of all arguments that can be constructed from KB in AS (below called the
set of arguments on the basis of AT).

If there is no danger of confusion the argumentation system will below be left implicit.

As indicated above, when arguments are inference trees, three syntactic forms of attack are
possible: attacking a premise, a conclusion, or an inference. To model attacks on inferences,
it is assumed that applications of inference rules can be expressed in the object language. The
general framework of [22] leaves the nature of this naming convention implicit. In this paper
we assume explicitly that this can be done in terms of a subset L of £ containing formulas of
the form r; that denote the names of inference rules:

° ERQEZ{Ti|TiER}.

For convenience we will also use elements of £ as names for inference rules at the metalevel,
letting the context disambiguate.

Definition 3.8 [Attacks]

e Argument A undercuts argument B (on B’) iff Conc(A) € 7 for some B’ € Sub(B) with a
defeasible top rule 7.

e Argument A rebuts argument B on (B') iff Conc(A) € @ for some B’ € Sub(B) of the form
BY,...,B)! = ¢. Insuch a case A contrary-rebuts B iff Conc(A) is a contrary of .

e Argument A undermines B (on @) iff Conc(A) € @ for some ¢ € Prem(B) \ K,. Insuch a
case A contrary-undermines B iff Conc(A) is a contrary of ¢ orif ¢ € K,.

Next these three notions of attack are combined with the argument ordering to yield three
kinds of defeat. In fact, for undercutting attack no preferences will be needed to make it result
in defeat, since otherwise a weaker undercutter and its stronger target might be in the same
extension. The same holds for the other two ways of attack as far as they involve contraries
(i.e., non-symmetric conflict relations between formulas).

Definition 3.9 [Successful rebuttal, undermining and defeat]

Argument A successfully rebuts argument B if A rebuts B on B’ and either A contrary-rebuts
B'or A £ B'.

Argument A successfully undermines B if A undermines B on  and either A contrary-undermines
Bor A £ .

Argument A defeats argument B iff A undercuts or successfully rebuts or successfully under-
mines B. Argument A strictly defeats argument B if A defeats B and B does not defeat A.

The definition of successful undermining exploits the fact that an argument premise is also a
subargument. In [22], structured argumentation theories are then linked to Dung-style abstract
argumentation frameworks. Recall that such frameworks are a pair (A, C) where A is a set of
arguments and C C A x A. Then:

Definition 3.10 [DF corresponding to an AT] An abstract argumentation framework DF ar
corresponding to an argumentation theory AT is a pair (A, C) such that A is the set of argu-
ments on the basis of AT as defined by Definition 3.6, and C is the defeat relation on .4 given
by Definition 3.9.

Thus, any semantics for abstract argumentation frameworks can be applied to arguments in an
ASPIC™ framework. In [22] itis shown that for the four original semantics of [13], ASPIC* frameworks
as defined above satisfy [11]’s rationality postulates (if they satisfy some further basic assump-

tions).
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3.3 E-ASPIC™ with attacks on attacks

As described earlier, [17] incorporates a second attack relation allowing for the possibility of
attacks on attacks. Furthermore, [18] had reason to refine Modgil’s account with the possibility
that an attack relation between arguments is attacked by a set of arguments. Thus an extended
argumentation framework as defined in [18] is a tuple (A, C, D), where A is a set of arguments,
C C A x Ais an attack relation between arguments, and D C (2 /(}) x C contains the attacks
on attacks, or “pref-attacks”. Then for any set S C A, we say that A S-defeats B iff (A, B)
€ C and =3¢ C S s.t. (¢,(A, B)) € D. Thus defeat is made relative to a set of arguments;
specifically what the conclusions of these arguments say about the relative preference of A and
B. [17, 18] then defined argument extensions by adapting [13]’s definitions (in much the same
way as in [17]’s original formalisaton of EAF's). Since these definitions are irrelevant for present
concerns, we shall not repeat them here.

[18] then extended ASPIC* to E-ASPIC™, which instantiates EAFs just as ASPIC™ in-
stantiates DFs. The attack relation C is defined as in ASPIC™ with Definition 3.8. Then any
reference in ASPIC™ to the argument ordering < is removed, since this ordering is now the
outcome of argumentation. For the same reason any reference to the partial preorders on the
defeasible rules and knowledge base is removed. Instead a fully abstract partial function P is
assumed that extracts orderings from sets of arguments that conclude preferences (over other
arguments). These sets of preference arguments then collectively pref-attack attacks in order
to undermine the success of the latter as defeats. Thus an extended argumentation theory is
defined as follows:

Definition 3.11 [Extended Argumentation Theory]
— An extended argumentation system (EAS) is a triple (£, ~, R).
— An extended knowledge base (EK B)is aset K = K, UK, UK,.

Let A denote the set of arguments based on an EK B K in an EAS (£, ~,R), as defined in
Definition 3.6.

— An extended argumentation theory is a triple EAT = (EAS, EK B, P), where P is a partial
function defined as:

P24 — Pow(A x A).
Henceforth we say that if (X,Y) € P(¢) thenY < X € P(¢).

That is to say, an extended argumentation theory now makes explicit reference to the argu-
ments defined by the £'K B, mapping sets of arguments to preference relations over individual
arguments. This was done in order to remain as abstract as possible. So for example, [18] did
not want to define instead a function that mapped from sentences in £ to priority relations over
pairs of sentences in £ (e.g., (r1,72) € P(x = r1 > r2) ) since this would compromise the
generality of E-ASPIC™ in that [18] wanted to make as minimal a commitment as possible as
to how preferences are defined.

FE AT's are then linked to Extended Argumentation Frameworks as follows:

Definition 3.12 [EAFC for structured arguments] A structured FAFC corresponding to an
EAT (EAS,EKB,P), is a EAFC (A,C, D) such that:

1. Ais the set of arguments as defined in Definition 3.6;
2. (A, B) € C iff A undercuts, rebuts or undermines B according to Definition 3.8;
3. (¢, (A, B)) € Diff (A, B) € C, and:
(a) VB’ € Sub(B) s.t. Arebuts or undermines B on B’, 3¢’ C ¢ s.t. A < B’ € P(¢'),

and ¢ is a minimal (under set inclusion) set satisfying this condition; and

12



(b) A does not contrary undermine, contrary rebut or undercut B.°

We say that F is an extension of an EAT iff E is an extension of the structured EAFC corre-
sponding to the F AT Furthermore, we say that a structured EAFC (A, C, D) is finite iff .4 and
D are finite.

Definition 3.12 uses the P function, which needs to be defined separately. This function
may depend on conclusions of arguments that represent preferences or priorities. In such a
case, we assume a language £, that allows expressions of the form [ > I’, where [ and I’ are
wifs in £. We thus define for any extended argumentation system FAS = (£, ~, R):

o L, CL={I>U|Ll¢cL)

Note that a preference between inference rules r;,7; € R is expressed as a preference r; > r;
between the wifs that name the rules. Note also that this definition allows that £,,, contains
nested preference formulas. We further assume that any such £'AS contains a set of strict rules
PP axiomatising a partial preorder over > (here, x,y, z are meta-variables ranging over rule
names):

eo:(y>)AN(z>y) > (z2>x) eo0y:(y>x)— ~(x>y)

[18] give two definitions of the P function, capturing, respectively, the weakest- and last-
link principle of [22]. The weakest-link principle prefers an argument A over an argument
B if A is preferred to B on both their premises and their defeasible rules. In other words,
B < A € P(¢) if there is a defeasible rule r in B such that for each defeasible rule 7’ in A,
there is an argument in the set ¢ that has the conclusion ' > r. If both A and B have no
defeasible rules, then B < A € P(¢) if there is an ordinary or assumption premise [ in B such
that for each ordinary or assumption premise !’ in A, there is an argument in the set ¢ that has
a conclusion !’ > [. The last-link principle works in much the same way, but considers not all
defeasible rules but only the last defeasible rules. That is, the principle prefers an argument A
over another argument B if at least one of the last defeasible rules used in B is concluded to be
of lower priority to every last defeasible rule in A, or, in case that both arguments are strict, if
at least one ordinary or assumption premise in B s concluded to be of lower priority than every
ordinary or assumption premise in A.

4 Translating the ASPIC" framework: fixed preferences

In this section the connection between the core AIF ontology (Section 2) and the ASPIC™
argumentation framework (Section 3) will be defined. That is, it will be shown how an AIF
argument graph can be interpreted in terms of the ASPIC™ framework, and vice versa. This
makes the ASPIC framework a fully-fledged reification of the AIF, which can then engage
with other tools and methods in the AIF family and use the data generated by these other tools.

As already mentioned in Section 1, reifying the AIF ontology in a logical framework such
as ASPIC™ also results in the ontology being given a formal and rational grounding. There are
few constraints on an argument expressed in the ontology’s abstract language, as flexibility is
needed if the AIF is to take into account the natural arguments put forth by people who do not
always abide by strict formal rules of argument. However, the AIF also has a normative aim:
to help people perform “good”, i.e., rational, argument [27]; that is, to argue in a rational way.
The ASPIC™ framework sets rational boundaries for argumentation as well as providing for
consistency checking and further evaluation of complex argument graphs.

Recall that Definition 3.9 states that contrary undermine attacks, contrary rebut attacks, and undercuts always
succeed as defeats, irrespective of preferences
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A valid question is whether the boundaries set by the ASPICT framework are the right
ones; that is, does the ASPIC™ framework provide for appropriate argumentation logics for ex-
pressing and evaluating arguments? We think that this is the case, mainly because the ASPIC™
framework captures a broad range of existing argumentation formalisms from the literature.
Moreover, the ASPICT framework is embedded in the approach of [13] while, finally, under
certain reasonable assumptions it satisfies the rationality postulates of [11]. However, the ques-
tion as to whether ASPIC* is a good framework for expressing natural arguments can only
be answered after testing the limits and flexibility of ASPIC™. By connecting ASPIC™ to the
AIF ontology we may test the conceptual soundness of the framework and we may find that
there are reasonable argumentative concepts in the AIF ontology that cannot be expressed in
the ASPIC™ framework; in such a case, the boundaries set by the framework are too strict. The
AIF ontology, and particularly its hierarchy of argumentation schemes, is based on a tradition
in philosophy and linguistics that has carefully examined the patterns and fallacies that occur
in natural arguments [36]. Furthermore, with the AIF ontology as an interlingua, the expres-
siveness of ASPICT can be compared to the expressiveness of other reifications (e.g. [16]’s
framework) and thus the limits of ASPICT may be analysed. Finally, there is the possibility of
testing the ASPIC™ framework by engaging with large corpora of natural argument that have
been constructed in other tools that interface with the AIF (e.g. ArgDB [27]). Indeed, in Sec-
tion 6, we will make use of the defined translations in order to examine some of the issues
that may arise when interpreting AIF representations of diagrammed arguments in the ASPIC*
framework.

We will illustrate the translation functions by means of a simple example AIF graph shown
in Figure 5, which also shows some of the appropriate scheme types. The Forms have gener-
ally been left implicit, except where there is a danger of ambiguous interpretation (e.g., ra2’s
conclusion is  and not pa2; the latter denotes the preference of ra2 over ra3).

conclusion ) . conclusion
(ra2) Logical Conflict (ra3)
Defeasible Defeasible
inference inference
Defeasible
inference

Figure 5: Example AIF graph

4.1 From the AIF ontology to the ASPIC* framework

We now define how an AIF argument graph can be interpreted in ASPIC™. Since in ASPIC™ the
argumentation framework (Definition 3.10) is calculated from an argumentation theory (Defi-
nition 3.7), all that needs to be extracted from the AIF graph is the elements of such a theory.
In particular, the AIF graph does not need to directly represent the notions of an argument,
argument ordering, attack and defeat. This complies with the philosophy underlying the AIF,
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which is a language for the representation of arguments and not for to the computation of (prop-
erties of) arguments. Properties such as defeat are thus calculated properties of an AIF graph,
properties which can be inferred by some specific tool or framework that processes the graph.

Definition 4.1 [Translating AIF to ASPIC™]
Given an AIF argument graph G, a set of forms F and a set of fulfilment relations that link
elements of G to elements of 7, an ASPIC argumentation theory AT based on G is as follows:

1. L=1URA, where Lr = RA.
2. K ={v € I |visaninitial node}, where

(@) v € K,/ if v fulfils a form axiom/assumption; and

(b) v € K, otherwise.

3. Rs/R4 is the smallest set of inference rules ry, : vy, ..., v, —/= v for which there is a
node v, € RA such that:

(a) vy, fulfils a deductive/defeasible scheme € F; and

(b) vg’s direct predecessors of the form premise are v1, . . . , v, and vy’s direct successor
of the form conclusion is v.

4. v; € vy iff there is a node v, € C'A such that v, has a direct predecessor v; and a direct
SUCCESSor v;.

5. <'={(vj,vi) | vi,v; € K, there is a node v;, € P A such that v, has a direct predecessor
v; and direct successor v; }.

6. <= {(rj,r;) | ri,7; € Randr;,r; € RA, there is a node v, € PA such that v, has a
direct predecessor r; and direct successor 7 }.

The language of the argumentation theory consists of all I- and RA-nodes in the graph (1);
notice that the inferences (RA-nodes) are translated as the subset L of £. The knowledge base
K consists of all initial nodes in the graph (2): nodes that explicitly fulfil a form axiom’ or
assumption become members of their respective subsets of /C, all other nodes are considered to
be ordinary premises in .

Inference rules in the ASPICT framework are constructed from the combination of RA-
nodes and their predecessors and successors (3). The type of inference rule is determined by
the form that the RA-node uses. Note that here in fact we translate applications of inference
schemes from F as inference rules in R. Strictly speaking, RA-nodes should be translated as
Rules(A;) U...URules(A,), where Aar = {A1,..., A, } is the set of arguments that fol-
low from the argumentation theory AT. However, since this set of arguments is not directly
translated from the AIF graph (only the information that ASPIC* needs in order to infer or
“calculate” these arguments), we cannot define the translation of RA-nodes thus. This is in
practice not a problem, as in the ASPIC™ framework, any relevant inference rule is automat-
ically applied. That is, if there is an inference rule p — ¢ € R and p € K, there will be an
argument in A 47 in which this rule is applied with premise p and conclusion g. Furthermore,
we leave the exact translation of schemes in the Forms Ontology to rule schemes in the ASPIC™
framework implicit for now, as this would involve a more specific definition of rule schemes in
the ASPIC™ theory.

Contrariness is determined by whether two nodes are connected through a CA-node (4).
Finally, a PA-node between two initial I-nodes or between two RA-nodes translates into pref-
erences between either elements of IC (<’) or between inference rules (<), respectively (5, 6).

"Notice that here we allow for an additional subclass axiom of the Statement Description class in our AIF ontology
(Figure 1).
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Now, the ASPIC*argumentation theory based on the AIF graph in Figure 5 and its forms, is as
follows.

o L={p,q,s,t-r,r1,72,73};

o K =0:;K, ={p, s} Ko =0;

e Re=0;Ra={r1:p—qra:q=1t,r3:5= it}
e 5= {p}

o <I'=0;<={ry <rs,r3 <T2}.

Notice that here, it is implicitly assumed that ¢ and —¢ are contrary to each other. Given this
argumentation theory, the following arguments can be built:

Altp A2:A1:>,«1q A3:A2:>72t
Bi:s By:By =3t

One difference between an AIF argument graph and its translation into the ASPICT frame-
work is that the preferences in the original AIF graph do not necessarily obey the constraints
of a partial preorder, as do < and <, since users of the AIF are essentially free to ignore these
constraints. If, for example, we would try to translate an AIF graph which expresses a non-
transitive ordering of preferences, this will yield an error as such an ordering is not possible in
the ASPIC™ framework. This illustrates how ASPIC™ sets rational boundaries for argumenta-
tion.

In other cases, however, it might not be possible to translate a certain AIF graph to ASPIC™
because of a limitation of the ASPIC™ framework. For example, in the AIF, it is possible to give
reasons for and against contrariness and preferences (e.g. by supporting PA- or CA-nodes with
an I-node through an RA-node). In the ASPIC™ framework reasons for or against preferences
and contrariness relations cannot be given® and the translation function hence does not allow
for such constructions to be translated (e.g. a link between an RA-node and a PA-node is left
untranslated even when the PA-node is the conclusion of the inference denoted by the RA-node.

4.2 From the ASPIC" framework to the AIF ontology

We next define a translation from ASPIC™T to AIF. Since the AIF is meant for expressing ar-
guments instead of (closures of) knowledge bases, we define the translation for a given set of
arguments constructed in ASPIC " on the basis of a given argumentation theory. Hence, for any
function f defined on arguments (in Definition 3.6), we overload the symbol f to let, for any set
S ={A,...,A,} of arguments, f(S) stand for f(A;) U...U f(A,). Furthermore, as with
the translation from AIF to ASPICT we will leave the translation of rule schemes in ASPIC™
to schemes in F in the AIF implicit. This means that all inferences, preferences and conflicts in
the original ASPIC™ framework are applied (as non-applied inferences, preferences and con-
flicts are represented by schemes). What this effectively entails is that we translate only the
contrariness function and the preference relations <’ and < that hold between rules which are
actually used in an argument that is part of the argumentation framework.

Definition 4.2 [Translating ASPIC* to AIF]

Given a set of arguments 4 on the basis of an ASPIC™ argumentation theory AT, an AIF graph
G, a set of forms F and a set of fulfilment relations that link elements of GG to elements of F on
the basis of A is as follows:

8The E-ASPIC™ framework does allow for reasoning about preferences, see sections 3.3 and 5.
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1. I is the smallest set of distinct nodes v such that:

(@) vewtt(A)\ Lr;

(b) if v € Ky, /p/4 then v fulfils a form axiom/ordinary premiselassumption € F.

2. RA is the smallest set of distinct nodes  for each rule named r in Rules(A), where if
T € Ry/q then r fulfils a deductive inference schemeldefeasible inference scheme € F.

3. C'Ais the smallest set consisting of distinct nodes v for each pair ¢, ¢ € Wf f(.A) and
© € 1 (we say that v corresponds to (i, 1)));

4. PA is the smallest set of distinct nodes v for each a pair (k, k') in <’ such that k, k' €
Prem(.A) and for each pair (r,7’) in < such that v, € Rules(A)} (we say that v
corresponds to (k, k") or to (r,77));

5. Given (1) — (4), E is the smallest set such that for all v,v' in I U RAU PA U CA:
(a) Ifv € TURA and v € RA then:

i. (v,v") € E if v is an antecedent of v';
ii. (v',v) € Eif v is the consequent of v';
(b) Ifv € T and v' € C'A and v’ corresponds to (¢, 1), then:
i (v,v) e Eifv=y;
ii. (v',v) e Eifv=1.
(¢) fv e TURAand v’ € PA and v’ corresponds to (i, 1)), then:
i. (v,v) € Eifv=g;
ii. (v,v") € Eifv=1.

The above definition builds an AIF graph based on the elements of an ASPICT argumenta-
tion theory. The I-nodes consist of all the formulas in an argument in .4, and where appropriate,
forms in F are associated with these I-nodes (1). In our example (Figure 5), p, q, s,t and —t
are thus I-nodes, and p and s are of the form premise. The set of RA-nodes consist of all in-
ference rules applied in an argument in A; the type of inference rule determines which form an
RA-node uses (2). In Figure 5, the nodes raq, ras and ras are based on 71, 75 and 73, respec-
tively, and all these RA-nodes fulfil defeasible inference schemes € F. CA-nodes correspond
to conflicts between formulas occurring in arguments in .4 as determined by the contrariness
relation (3). The nodes ca; and cas are based on the contrariness between ¢ and —t (recall that
ASPICtimplicitly assumes these contrariness relations in the case of classical negation) and
cag is based on 5 = {p}. Finally (4), PA-nodes correspond to the preferences in AT between
the rules used in arguments in A (<) or between the premises of arguments in A (<’). In the
example, there are two preferences 1 < 73,73 < ro which translate into pa; and pas, respec-
tively. Since the argument ordering < of AT is defined in terms of < and <’, it is not part of
the AIF graph.

The edges between the nodes are determined in terms of the relations between the corre-
sponding elements in the AT'. I-nodes representing an inference rule’s antecedents and conse-
quents are connected to the RA-node corresponding to the rule (for example, the edges from
p to ra; to q in Figure 5). Reasons for inference rules can be appropriately translated as links
from RA-nodes to RA-nodes: condition 5b says that for any rule 7 in an argument with as its
conclusion another rule ' € Lg, the RA-node corresponding to r is connected to the RA-node
corresponding to r’. In this way, an argument claming that an inference rule should be applied
(e.g. areason for why there is no exception) can be expressed. Links from or to PA- and CA-
nodes are connected to I- and RA-nodes according to the preference and contrariness relations
in AT. For example, the edges from rag to pa; to rap are based on r; < r3 (i.e. pay corre-
sponds to (r1,r3) €<). An undercutter can be expressed as a link from the conclusion of the
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undercutting argument, an I-node, to a CA-node and a link from this CA-node to the RA-node
denoting the undercut rule.

4.3 Identity-preserving translations for ASPIC™

Ideally, translating from AIF to some (formal) language and back again yields the original
AIF graph. Whether a set of arguments expressed in ASPICT or AIF are representationally
isomorphic depends on the expressiveness of both the AIF language and ASPICT. As was
discussed in the previous sections, there are some AIF structures that cannot be expressed in
ASPIC*. However, we can prove that the translation functions are identity-preserving (i.e.
translating from AIF to ASPICT and back again yields the same graph as we started out with)
if we enforce some assumptions on the original graph. The conditions (3) — (6) on the graph set
out in Definition 2.1 naturally apply. They ensure that the S-nodes always have their required
predecessor and successors (i.e. RA-nodes have at least one premise and exactly one conclusion,
PA-nodes have exactly one preferred element and exactly one dispreferred element and CA-
nodes have exactly one conflicting element and exactly one conflicted element). In addition,
we make some further assumptions on the graph so that it does not represent structures that
cannot be handled by ASPIC™. In particular, normal ASPIC™ does not allow us to talk about
preferences or contrariness relations in the object language and hence, PA- or CA-nodes cannot
be the premises or conclusions of RA-nodes, the preferred element or dispreferred element of a
PA-node or the conflicting element or conflicted element of a CA-node. Under these conditions
and assumptions, it can be proven that all translations from the AIF to ASPIC™T and then back
result in an AIF graph that is isomorphic with the original graph in that the graphs differ at most
in their names for the nodes.

Theorem 4.3 Let G’ be an AIF graph, AT be the ASPICT argumentation theory based on G’,
and G be an AIF graph based on Args 4. Then G is isomorphic to G'.

The formal proofs can be found in the appendix. Note that here, we only prove that translat-
ing an AIF graph to ASPIC™ and back again yields the same graph. These formal results do not
mean that translating an ASPIC™ set of arguments to AIF and back again yields the same set of
arguments. The reason for this is that in this paper the language of the AIF ontology is used as
the interlingua and we consider ASPIC™ as a reification of this abstract interlingua. Were we to
use ASPIC™ as an interlingua in the same way we use the AIF ontology, we should prove that
the translation from ASPIC™ to AIF and back to ASPIC™ is also identity-preserving. This proof
would be more or less analoguous to the proof of Theorem 4.3. Furthermore, in the same way
that Theorem 4.3 assumes a particular AIF graph, we would need to enforce some assumptions
on the ASPIC™ theory so that theories that the AIF cannot express are not considered (e.g. only
ASPIC™ theories in which all rules in R are used should be considered, otherwise the graph
will have unconnected RA-nodes, which is not possible in the AIF).

5 Translating the E-ASPIC™ framework: defeasible prefer-
ences

5.1 From the AIF ontology to the E-ASPIC™ framework

We next present a translation from the AIF to E-ASPICT. We now want to replace clauses
(5) and (6) of Definition 4.1 with a translation of AIF preference structures into an E-ASPIC*
argumentation theory. Such a theory gives rise to a set of E-ASPIC™ arguments, from which
E-ASPIC™’s P function then extracts an argument ordering. Since in general the P function
is undefined, we cannot give a general translation of an AIF graph to the input needed by the
‘P function; all we can give is translations for specific kinds of P functions. Therefore, we
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give a translation for P functions that define the argument ordering in terms of orderings of the
defeasible rules and the non-axiom premises (cf. Section 3.3) We hence assume the language
Ly, C L that allows us to express preference predicates (denoted as ¢ > 1) and that R,
contains the set of rules P P that axiomate the partial preorder over >.

Our new translation definition thus allows for formulas of the form [ > I’, where [ and I’ are
terms denoting I-nodes, RA-nodes and PA-nodes. This new translation must extract preference
statements from I — PA — I, RA — PA — RA, PA — PA — PA structures in an AIF
graph. Thus, we relax the restrictions on the AIF graph that were mentioned in section 4.3. Note
that CA — PA — CA structures still cannot be translated since E-ASPIC* does not allow
for preferences between contrariness relations). Furthermore, the translations of inference rules
and contrariness relations must also be amended: Suppose in G' an RA-node ra/ instantiating a
deductive scheme has a set S of I-nodes as predecessors and a PA-node pa as successor, where
pa connects I-node p to I-node ¢. Clause (3) of the old translation function (in Definition 4.1)
translates this into a strict rule S — pa, but we want instead the rule S — p > q).

Another issue for the new translation function is how to disambiguate the multiple incoming
links into a PA-node in a situation where a reason for a preference has been given. In such a
situation, we cannot simply say that the predecessor of a PA-node v is preferred to its successor
v’ (i.e. v > v’) since an (RA-node) predecessor of a PA-node may denote the inference for the
preference statement expressed by the PA-node, as its conclusion. For example, in Figure 6, ral
is a predecessor of pal but ral is not preferred to g; rather, p is preferred to ¢ and ral denotes
the inference (from t) to the preference expressed in pal (¢ < p). In order to correctly translate
a graph such as this, we have to use the Forms Ontology to realize the disambiguation. We thus
assume that preferred and dispreferred nodes in a graph fulfil the appropriate forms in F.

This leads to the following translation function from the AIF into E-ASPIC™:

Definition 5.1 [Translating AIF to E-ASPIC™]

Given an AIF argument graph G, a set of forms F and a set of fulfilment relations that link ele-
ments of G to elements of F, an E-ASPICTargumentation theory AT based on G is as follows
(we let formulas be denoted by the same kind of terms, letting the context disambiguate).

1. £L=L,UL,, where:

(a) L, =1URA, where Lr = RA,
(b) L,y is recursively defined as £9, U ... U L?, where:

o L% = {v; > v; | v; and vj are both in I or both in RA; v; and v; are the direct
predecessor and direct successor of a PA-node pa € PA and fulfil the forms
preferred and dispreferred from F, respectively (we say that v; > v; is based
on pa).

o Ln =Ly U{p>1) |

i. o, € L1 and

ii. ¢, are based onv;,v; € I URAU PA;and

iii. v; and v, are the direct predecessor and direct successor of a PA-node pa
in G and fulfil the forms preferred and dispreferred from F, respectively
(we say that ¢ > 1) is based on pa).

2. K={v|vel]|visaninitial node} U {p € L,, | ¢ is based on v' € PA where v’ has
at most one direct predecessor}, where

(@) v € Ky, /q if v fulfils a form axiom/assumption; and

(b) v € KC,, otherwise.

3. Rs/Rq is the smallest set of inference rules 1, ..., p,—1 —/= ¢, for which there is a
node v, € RA such that:
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(a) vy, fulfils a deductive/defeasible scheme € F; and

(b) wvy’s direct predecessors of the form premise are vy, ...,v,_1 and vy s direct suc-
cessor of the form conclusion is v,, such that forall 1 < ¢ < n: @; = v; or @; is
based on v;.

4. ¢; € pj iff there is a node v, € C'A such that vy, has a direct predecessor v; and a direct
successor v; such that ¢; = v; or ¢; is based on v; and ¢; = v; or ; is based on v;.

The language of the argumentation theory (1) is expanded to include preference statements.
Notice that in the definition of £,,, we need the Forms Ontology to correctly determine whether
a predecessor of a PA-node is the preferred element corresponding to the preference application.
The translation further needs to keep track of the connection between an E-ASPIC* preference
statement and the PA-node it was based on, so that conflicts between preferences and reasons
for preferences can be correctly translated.

The translation to the knowledge base (2) must also be amended: in addition to the propo-
sitions that correspond to initial nodes, K also contains preference statements based on PA-
nodes that have not been inferred from some other information, but are themselves premises.
This is ensured by allowing only PA-nodes that have at most one direct predecessor. To see
why, observe that a preference of node v over node v’ is at present defined in the AIF as
v — PA — v'. Hence, if a PA-node has more than one predecessor, one of those predeces-
sors must be the RA-node that denotes the inference for which the PA-node is the conclusion.

Finally, as was already mentioned just prior to Definition 5.1, the translations of inference
rules (3) and conflict (4) have to be slightly amended so that reasons for preference statements
and conflict between preference statements are correctly extracted from the graph.

As for the ASPIC™ framework with fixed preferences, E-ASPIC™ sets some rational bound-
aries for argumentation. For example, the preferences in the E-ASPIC™ framework obey the
constraints of a partial preorder. Furthermore, the translation function ensures that only pref-
erences between two nodes of the same type (I-nodes or RA-nodes) are incorporated into the
logical framework. However, there are still some limitations on the E-ASPIC™ framework: for
example, reasons for conflict relations or preferences between conflicts cannot be expressed in
E-ASPIC™.

In order to illustrate the above translation function we consider an example that is slightly
more complex than the one in Figure 5. This new example (Figure 6) illustrates the use of
preference arguments to resolve conflicts. It also illustrates that not all preferences that can
be stated in an AIF graph are used by E-ASPIC™ to compute defeats, even though they are
translated. Let us say that all RA-nodes fulfil a defeasible inference scheme. Now, the E-
ASPIC™ theory E'AS based on the graph is as follows:

o Lo={p,qs,t,u, 1,72, 713}

o Lo ={p>q,q>p,r3>1r38>1}

o K, =0:K, ={p,q,u,q >p,rg >r2, 8>t} Ke =0

e Ras=PP;R;={r1:u=p>q,ro:p=8,r3:q=1t}
o 5={t},t={s}.

Given this argumentation theory, the following arguments can be built. The arguments that can
be built on the basis of the rules PP (which axiomatise a partial preorder) are not shown.

Allp Ay i Ay =2 S
Bliq By : By =3t
Ci:u Cy:Ci=mp>q
Dy:qg>p

FEi:r3>r9

Fy:s>1t
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premise
(ral)

Figure 6: Preferences over arguments

Given the above set of arguments, Definition 3.8 determines that Ao attacks Bs and vice
versa. Which one of these arguments ultimately defeats the other depends on whether we choose
to adhere to the last-link or the weakest-link principle. In the case of the last-link principle,
argument F1, which expresses a preference of a rule in Bs over a rule in A, attacks the attack
from As to By and thus ensures that By defeats As. According to the weakest-link ordering,
both arguments are defensible: the defeasible rules in Bs are still stronger than those in Ao, but
the elements p and ¢ in KC are equally strong. Note that not all preferences have been used here:
the preference between r and s is a premise of E-ASPIC Tbut it is easy to verify that neither the
last- nor the weakest-link ordering use this preference to determine defeat.

Figure 7: Preferences on preferences

In order to illustrate the recursive definition of £,,, consider the AIF graph in Figure 7. This
graph leads to the following contents of L.

o Lo={p,q};
o L, =LY UL where

- L) ={p>qq>ph
- L ={(g>p)>(@>q),p>q >(@>p}

Note that in £,,, we have that p > ¢ is based on PA;, ¢ > pis based on PAs, (¢ > p) > (p >
q) is based on PA3 and (p > ¢q) > (g > p) is based on PAy.
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5.2 From the E-ASPIC* framework to the AIF ontology

We now turn to the translation from E-ASPIC™ to AIF. Just as for ASPIC™, we give the transla-
tion for a given set of arguments A, and just as for the translation of the AIF to E-ASPIC+, we
only give the translation for for P functions that define the argument ordering in terms of order-
ings of the defeasible rules and the non-axiom premises. Furthermore, as with the translation
from ASPIC™ to AIF we assume that all preferences are applied, that is, there is no preference
statement ¢ > 1) € L,,, for which either ¢ or % is not part of an argument in A (i.e. both ¢ and
1 are in Rules(A) or in WE£(A)).

Definition 5.2 [Translating E-ASPIC™ to AIF]

Given a set of arguments A on the basis of an E-ASPIC™ argumentation theory F AT, an AIF
graph G, a set of forms F and a set of fulfilment relations that link elements of G to elements
of F on the basis of A is as follows:

1. I is the smallest set of distinct nodes v such that:

(@ vewtf(A)\ (LrULy)
(b) if v € Ky, /)4 then v fulfils a form axiom/ordinary premiselassumption € F.
2. RA is the smallest set of distinct nodes r for each rule named r in Rules(.A), where if

T € Ry/q then r fulfils a deductive inference schemeldefeasible inference scheme € F,
respectively.

3. CA is the smallest set of distinct nodes v for each pair ¢, € Wff(.A) and ¢ € ) (we
say that v corresponds to (¢, ¥));

4. PA is the smallest set of distinct nodes v for each wff ¢ > ¢ € L, NWEf(A) (we say
that v corresponds to (¢, ¥));

5. E is the smallest set such that for all v, v’ in G:

(a) Ifv e ITURA and v’ € RA, then:
i. (v,v") € Eif v is an antecedent of v’;
ii. (v/,v) € FEif v is the consequent of v’;
(b) fv e TURAUPAand v’ € CA and v’ corresponds to (i, 1), then:
i. (v,v) € Eifv=y;
ii. (v',v) € Eifv=1.
(c) fve ITURAUPAand v € PA and v’ corresponds to (g, ¢), then:

i. (v',v) € Eif ¢ > 9 is the antecedent of v;

i. (v,v") € Eif ¢ > 1 is the consequent of v;

i. (v,v") € E and v fulfils a form preferred € F if v = o and
iv. (v/,v) € E and v fulfils a form dispreferred € F if v = 1.

The set of I-nodes (1) is similar to that in Definition 4.2, except that here the preference
statements are not translated as I-nodes (but rather as PA-nodes). In the example (Figure 6),
p,q,7,8,t and p, q,t are of the form premise. The translations of RA-nodes (2) and CA-nodes
(3) are the same as in the original ASPIC™ translation (Definition 4.2). Thus, in Figure 6, the
nodes rai, ras and ras are based on 71, 7 and r3, respectively, and all these RA-nodes fulfil
defeasible inference schemes € F. The nodes ca; and cay are based on the conflict between r
and s.

PA-nodes are of course defined differently, as they are based on preference statements rather
than some predefined set of preferences. These preference statements in an £ AT are between
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the rules used in arguments in A (<) or between the premises of arguments in A (<’). In
the example, there are two preferences 1 < r3,r3 < ro which translate into pa; and pas,
respectively. Since the argument ordering < of AT is defined in terms of < and <’, it is not an
explicit additional part of the AIF graph.

The edges between the nodes are again determined in terms of the relations between the
corresponding elements in the £ AT'. For RA-nodes and CA-nodes (5a and 5b) the definition is
the same as Definition 4.2. For PA-nodes (5¢), however, there are some slight differences. First,
there is an edge from an RA-node to a PA-node if the RA-node denotes the inference rule that is
used to infer the preference statement denoted by the PA-node (5¢(i)). Second, the fulfilment of
certain forms can only be defined here: any node that is the predecessor of a PA-node (and that
does not denote a “reason” RA-node) is of the form preferred and any node that is the successor
of a PA-node is of the form dispreferred.

When preferences in ASPIC™ are translated to AIF, the preferences in the graph will adhere
to the conditions of a partial preorder but these conditions will not be explicit. In E-ASPIC™,
these conditions are made explicit as strict inference rules (the strict rules PP in Section 3.3)
so they are translated to the AIF graph. Take, for example, transitivity. Assume the following
argumentation theory:

o Lo={p,qr, i}

e L,={p>qq>rp>r}

o Kn=0:Ky=1{p>qq>r}Ki=0

o Ry = {Transitivity : p > q,q > 1 — p>r}and Rq = 0;
e There are no contrariness relations.

Note here that the Transitivity rule is one of the rules in PP that was implicitly assumed
to be part of every E-ASPIC™ argumentation theory. Now, given this argumentation theory the
following arguments can be built:

Ay :p>q As:q>r As3: A, Ay —=p>T
These arguments can then be translated to AIF, which gives us the graph in Figure 8. Notice
that ¢ fulfils both the form preferred and the form dispreferred, but for distinct preferences. The

current translation functions do not keep track of the particular preference for which an element
is either preferred or dispreffered as this is not necessary for a correct translation.

(2 @#@

preferred dispreferred dispreferred
(pal, pa3) (pal) (pa2, pa3)
preferred
(pa2)

Figure 8: Deriving new preferences from old ones with transitivity
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5.3 Identity-preserving translations for E-ASPIC"

Just as for ASPIC™, translating from AIF to E-ASPIC™ and back to AIF yields the same graph
as the original one. However, the conditions on the graph for E-ASPIC™ are slightly different,
because of the possibility of reasons for, preferences between and conflicts between preferences.
Hence, we need only assume that CA-nodes cannot be the premises or conclusions of RA-
nodes, the preferred element or dispreferred element of a PA-node or the conflicting element or
conflicted element of a CA-node.

Theorem 5.3 Let G’ be an AIF graph, AT be the E-ASPICT argumentation theory based on
G’, and G be an AIF graph based on Args 4. Then G is isomorphic to G’.

6 Evaluating Diagrammed Arguments via the AIF to ASPIC*
Translation

As stated in section 1, one of the AIF’s main practical goals has been to facilitate the research
and development of various tools for argument manipulation and visualization. In particular,
[12] envisaged the use of the AIF as an interlingua linking the aforementioned tools to software
components for evaluating the dialectical status of arguments under the various semantics pro-
posed for Dung’s abstract argumentation frameworks [13]. The work presented in the previous
sections represents an important step towards realising this use. Given an AIF translation of
diagrammed arguments, one can then employ Definition 4.1’s translation to obtain the corre-
sponding ASPIC™ argumentation theory. The abstract argumentation framework corresponding
to the argumentation theory can then be obtained as defined in Definition 3.10, so that the status
of the diagrammed arguments can then be evaluated under the various semantics.

In order to realise this use of the AIF and its ASPIC™T translation, the specific formats
that are output by the diagramming tools will have to be translated to the language of the AIF
ontology. This translation includes both a theoretical component (i.e. the visual language of
the individual diagramming tool has to be translated into the language of the AIF ontology)
and an implementation component (i.e. the file format of the diagramming tool will have to be
translated into an AIF file format and vice versa). As for implementation, converter programmes
currently exist for a number of diagramming tools:” Araucaria, Rationale and Carneades. In this
section, we explore some of the issues behind the Rationale translation. !0

The Rationale tool [5] has been developed for nurturing critical thinking skills by allowing
users to organize information, visualize argumentation, and subsequently build well-founded
arguments, and to identify, analyze and evaluate argumentation presented by others. It visualises
information (i.e. claims, sentences, propositions) as text boxes and includes two main relations
between these pieces of information: (supporting) reasons and (opposing) objections. Consider
the Rationale diagramming of the argument in Figure 9, which illustrates a user’s diagramming
of a statement ¢2: ‘It is sunny today’ supporting (green) the claim that ¢1: ‘I should go to the
beach today’, and a statement ¢3: ‘The surf is dangerous today’ opposing (red) the claim that ‘I
should go to the beach today’.

Rationale diagrams can be translated to AIF graphs in the following way.

Definition 6.1 [Translating Rationale to AIF] Given a Rationale diagram D, an AIF graph G
on the basis of D is as follows.

1. I is the smallest set consisting of distinct nodes v for each text box in the diagram.

9These coverters are currently in advanced stages of development and will shortly become available on www .arg.
dundee.ac.uk/AIF

10The reason we discuss Rationale is that the OVA tool, which is explicitly based on the AIF!, is more or less
“Araucaria-light” and a translation to Carneades has a somewhat more complicated theoretical component due to
Carneades’ underlying logic (see [33] for a connection between ASPICT and Carneades, however).
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i1
I should go to
the beach today

i2 supports i3 opposes

The surfis
dangerous today

Itis sunny -
today T

i4 opposes i5 supports 6 rebuts i7 supports

I'd like to
have a tan

| get sunburm
easily

I'run the risk
of drowning

| am a strong
swimmer

Figure 9: An argument in Rationale

2. RA is the smallest set consisting of distinct nodes v for each (green) reason link in the
diagram.

3. C'A is the smallest set consisting of distinct nodes v for each (red) objection link in the
diagram.

4. E is the smallest set such that for all v, v’ in G:

(a) Ifv e ITURAUCAand v’ € RA then:

i. (v,v") € F if the link or box corresponding to v is at the beginning (bottom)
of the reason link corresponding to v';

ii. (v',v) € Eif the link or box corresponding to v is at the end (top) of the reason
link corresponding to v';

5. ffve ITURAUCAandv' € CA then:

(a) (v,v’) € E if the link or box corresponding to v is at the beginning (bottom) of the
opposition link corresponding to v';

(b) (v',v) € E if the link or box corresponding to v is at the end (top) of the opposition
link corresponding to v';

Now, if we take the statements ¢1 — 23 from the diagram in Figure 9, through subsequently
applying Definitions 6.1 and 4.1 we get the following ASPIC™" argumentation theory.

o K, ={is,iz};

e Rg={r1:ia =101}
o iy = {iz};

e arguments:

Ay iig, Ag t Ay =01 0n
B1 : i3

Here, B, rebut-attacks As. This interpretation assumes that the user is implicitly expressing
that the very fact that “The surf is dangerous today’ invalidates the conclusion that ‘I should
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go to the beach today’. Such an assumption reflects argumentation as it often occurs in human
practice, in the sense that the rationale for why a given conclusion invalidates another is not
explicitly articulated: in this case that “since the surf is dangerous today then I should not go
to the beach today and this takes precedence over the conclusion that ‘I should go to the beach
today’ ”. This rationale is encoded by specifying that i3 (‘The surf is dangerous today’) is a
contrary of 71 (‘I should go to the beach today’), and not vice versa. Hence, B;’s rebut-attack
on As is a (asymmetric) contrary attack, and so succeeds as a defeat independently of any
preferences.

Rationale also allows the visualisation of reasons for, and objections to, links. Thus, one
can visualise support for support links (akin to warrants [32]), such as the link from 75 in Figure
9, support for objection links such as the link from ¢7 in Figure 9, objections to support links
(akin to undercutters [20]), such as the link from ¢4 in Figure 9, and objections to objections
(akin to attacks on attacks [17]), such as the link from ¢ in Figure 9.

Using Definitions 6.1 and 4.1, the full Figure 9 would be translated into ASPIC™ as follows.

o K, = {iz,i3,14,15,16,07};
° Rd = {7”1 Zig = il,Tg : i5 = 7“1};
o i1 = {ig}, 71 = {ia};
e arguments:
Ay tig, Ag t Ay =01 0
Bl : ig
Cl Zi4
Dy :i5, Dy iis =211

E1126
F1:i7

Again, B; rebut-attacks A,. However, in this case C; also undercut-attacks A, and rebut-
attacks D5 and vice versa. Note that not all the information in the Figure 9 has been translated
to ASPIC™. In the intermediate AIF graph, the supporting effect of i on the objection link
from i3 to ¢ is translated as a reason (through an RA-node) for the CA-node representing this
objection link. However, this cannot be translated into ASPIC* directly, as the framework does
not allow for reasons for contrary relations. The same is the case for the objection i¢ to the
objection link from 43 to 4. In the AIF graph, this is represented as a conflicting element i that
is in conflict with (through a CA-node) the conflicted element that is the CA-node representing
the objection link. However, ASPIC™ does not allow us to express propositions that are contrary
to the contrariness relations themselves.

If we want to fully translate the Rationale diagram, we therefore need to interpret it differ-
ently. For example, we could argue that ‘“The surf is dangerous today’ (i3) is a reason for i1pe4:
‘I should not go to the beach today’ through some RA-node: i3 — RA3 — i15e4. Node i7
then supports RAs through an RA-node of its own: i; — RA4; — RAjs. This gives us two
ASPICT arguments: B : i3 =3 i1ne, (Which attacks As) and FY : i7 =>4 r3, where r3 and
r4 are based on RA3 and RA,, respectively. Thus, reasons that have an indirect supporting ef-
fect on the decision to not go to the beach are formulated.!! Conversely, in the case of ig we can
say that this somehow indirectly supports or expresses a preference for going to the beach. If
we want to interpret this “objection against an objection” as a preference, we need to look at the
way in which E-ASPIC™T ultimately handles preference as attacks on attacks (Definition 3.12).
‘T am a strong swimmer’ (ig) is then the basis of some argument that makes us prefer A, over
Bj or, in other words, i¢ is a reason for the preference i1 > i15,eq.

This discussion and consideration of the translation options illustrates that if we want to use
the current translation functions from AIF to ASPICT, in some cases we need to establish the

U Note, however, that Fl’ has no direct effect on the dialectical status of Bi.
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interpretations that the original authors of the arguments had in mind when diagramming the
arguments. The various options for translation also suggest the possibility of extending these
functions: nodes that are in conflict with a conflict itself may point to preferences and nodes that
support conflict may be interpreted as supporting reasons. However, it might also be decided
that in this respect (E-)ASPIC™ needs to be extended to further incorporate the various ways in
which people naturally reason in an informal setting provided by a diagramming tool.

7 Conclusions and future research

In this paper we have shown how argument graphs as defined by the AIF can be formally
grounded in the (E-)ASPIC™ framework. We have given the AIF ontology a sound formal ba-
sis and demonstrated how a formal framework can aid in tracing possible inconsistencies in a
graph. Because of the formal scope of (E-)ASPIC™, we have also implicitly shown the con-
nection between the AIF and other argumentation formalisms. In addition to the (E-)ASPIC*
framework’s obvious relation to [13, 20, 35, 23], several other well-known argumentation sys-
tems (e.g. [10],[6]) are shown by [22, 19] to be special cases of the (E-)ASPIC™ framework.
The connection between the AIF and (E-)ASPIC™ can therefore be extended to these systems.
A topic for future research is to see what the relation is between the AIF and other argumen-
tation formalisms that fall outside the scope of (E-)ASPICT (see [22, 24] for examples); this
would also further clarify the relation between the (E-)ASPICT framework and these other
formalisms. Thus, one of the main theoretical aims of the AIF project, namely integration of
diverse results into a coherent whole, would be realized.

In section 6 we lay the foundations for evaluating arguments in diagramming tools accord-
ing to formal argumentation semantics. This thus shows a possible use of the AIF as bridging
between natural argumentation as performed by humans, and logical models of argumentation.
This in turn provides foundations for logic based normative concepts of reasoning to guide hu-
man argumentation (e.g. by suggesting an argument the user needs to attack in order to reinstate
his main point), as well as for integrating human argumentation with logic based models of rea-
soning (provided that the limitations of the formal framework can be addressed, e.g. ASPIC™’s
inability to deal with reasons for and against conflict).

The paper shows that a relatively simple AIF argument graph contains enough information
for representation in a complex formal framework such as ASPIC™. Information that is not con-
tained in the graph, such as defeat relations, can be calculated from the graph as desired. This
conforms to the central aim of the AIF project: the AIF is intended as a language for expressing
arguments rather than a language for, for example, evaluating or visualizing arguments. That
said, the discussion on what should be explicitly represented in the graph and what should count
as a calculated property is by no means settled. In this regard, it would be interesting to explore
how and if the AIF can be directly connected to abstract argumentation frameworks, which have
the notion of argument as one of its basic components.'?

A connection between computational argumentation theory and argumentation practice is
vital if the former is to find application and real world utility in the latter. Of course, there are
other areas where computational argument might have impact (in distributed, complex systems;
in automated markets; etc.) but with so much computational work — from [16] to [13] — ex-
plicitly inspired by and acknowledging influence from natural argumentation, it is an enormous
missed opportunity if we, as a community, fail to connect computational with natural practice.
Yet to date, there has been only the lightest connections between formal and natural models. In
this paper we have shown for the first time how not just a single technique, but the entire raft of
tools, theories and systems encompassed by or compatible with AIF (including, but not limited
to, diagramming systems such as Rationale [5], philosophical theories of argumentation such as

12 An implementation of this connection between an extended version of AIF and abstract argumentation has been
trialled in OVA-gen, a tool for computing acceptability semantics accessible at http://www.arg.dundee.ac.uk/OVA/.
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[20], and recent advances in argumentation theory itself such as [36]) can be connected to work
not only on structured argumentation, characterised by ASPIC+, but also on abstract argumen-
tation via the formal machinery introduced in [22]. Thus we have laid a foundation for now
exploring what our formal and computational models can do in natural argument contexts, and,
similarly, exploring what features of natural argument might next be tackled to enrich our com-
putational systems. In this way we aim to contribute both to the continuing growth of research
in computational models of argument whilst simultaneously contributing to the relevance and
applicability of that research.

Appendix: Proofs

In order to be able to prove identity-preserving translations for ASPIC*, we use the following
conditions and assumptions on the graph G.

e Definition 2.1(3): Only I-nodes are initial nodes.

e Definition 2.1(4): RA-nodes have at least one direct predecessor of the form premise and
exactly one direct successor of the form conclusion.

e Definition 2.1(5): PA-nodes have exactly one direct predecessor of the form preferred
element and exactly one direct successor of the form dispreferred element.

e Definition 2.1(6): CA-nodes have exactly one direct predecessor of the form conflicting
element and exactly one direct successor of the form conflicted element.

e Al: There are no PA- or CA-nodes of the form premise or conclusion.
e A2: There are no PA- or CA-nodes of the form preferred element or dispreferred element.
e A3: There are no PA- or CA-nodes of the form conflicting element or conflicted element.

Under these assumptions it can be proven that all translations from the AIF to ASPIC™ and
then back result in an AIF graph that is isomorphic with the original graph in that the graphs
differ at most in their names for the nodes.

We first prove that under the above assumptions any node or edge in an AIF graph G is trans-
lated to something in the AT based on G and any element of a component in the corresponding
ASPIC* AT is the result of a translation from G.

Lemma 7.1 If AT is an ASPIC* argumentation theory based on AIF graph G, then:
l.ieliffie L\ Lp.

2. re RAiffr € Lg.

3. Forany ¢ € I itholds that+ € K or % is an antecedent or the consequent of a rule in R.

4. For any 7 € K it holds that¢ € I.

5. For any r € RA of form strict/defeasible and any v € T U RA, if (v,r) € E, then there
exists a unique inference rule r : v1,...,v,, —/= v, € Rsuchthatv = vy or... or
V= Uy

6. For any r € RA of form strict/defeasible and any v € I U RA, if (r,v) € E, then there

exists a unique inference rule r : vy, ..., v, =/= v € R.

7. For any inference rule r : vy, ..., v, —/= v, € R itholds that v; € I ifv; € L; and
v, € RAifv; € Lp, r € RA of form strict/defeasible and (vy,7), ..., (v, 7), (r,v,) €
E.
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10.

11.
12.
13.
14.
15.

16.

17.

18.
19.
20.

21.

. Forallv € Vand c € CA: if (v, ¢) € E then for some v’ it holds that (v,v') € ~

. Forallv € V and ¢ € CA: if (¢,v) € E then for some v’ it holds that (v/,v) € ~.

For all ¢ € C' A there exist unique v, v’ € I U RA such that (v,¢) € E and (c,v') € E
and (v,v") € ~

For all (v,v’) € ~ it holds that v, v’ € T U RA.

For all (v,v") € ~ there exists a unique ¢ € C'A such that (v,c) € E and (¢,v’) € E.
Forall i € I and p € PA: if (i,p) € E then for some i’ € I it holds that (i,4') € <.
Foralli € I and p € PA: if (p,i) € E then for some i’ € I it holds that (i’,7) € <.

Forallr € RA and p € PA: if (r,p) € E then for some v’ € RA it holds that (r,r’) €
<.

Forall € RAand p € PA: if (p,r) € E then for some ' € RA it holds that (r',r) €
<.

For all p € PA there exist unique v, v’ € I U RA such that (v,p) € F and (p,v') € E
and (v',v) € < or (v',v) € <.

For all (v,v’) € <" it holds that v,v" € I.
For all (v,v") € <itholds that v,v" € RA.

For all (v,v") € <’ there exists a unique p € P A such that and (v,p) € E and (p,v’) €
E.

For all (v,v’) € < there exists a unique p € PA such that (v,p) € F and (p,v’) € E.

Proof:

1.

AW

~N Y D

10.
11.
12.
13.
14.

Obvious.

. Obvious.

. By construction of K and R (Definition 4.1(2,3)) and Definition 2.1(4).
. By construction of K in Definition 4.1(2) and Definition 2.1(3).

. By construction of R in Definition 4.1(3) and Definition 2.1(4).

. By construction of R in Definition 4.1(3) and Definition 2.1(4).

. By construction of R in Definition 4.1(3) and assumption Al.

By construction of ~ in Definition 4.1(4).

By construction of ~ in Definition 4.1(4).

From (8,9), assumptions Al, A2 and A3 and Definition 2.1(6).

From Definition 4.1(1,4) and assumption A3.

From the construction of ~ in Definition 4.1(4) and Definition 2.1(6).
By construction of <’ in Definition 4.1(5).

By construction of <’ in Definition 4.1(5).
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15. By construction of < in Definition 4.1(6).

16. By construction of < in Definition 4.1(6).

17. From 13-16, assumptions A1, A2 and A3 and Definition 2.1(5).

18. From Definition 4.1(1,2,5), assumption A2 and Definition 2.1(4, 5).
19. From Definition 4.1(1,6), assumption A2.

20. From the construction of <’ in Definition 4.1(5) and Definition 2.1(5).

21. From the construction of < in Definition 4.1(6) and Definition 2.1(5).

Next, consider for any ASPICT argumentation theory AT based on an AIF graph G the set
Args 47, that is, the set of all arguments that can be constructed on the basis of A7. When
in Definition 4.2 we choose A 71 = Args 47, it can be proven that if AT is based on G, then
Definition 4.2 returns an AIF graph that differs at most from G in the names for the nodes and
edges of G.

Theorem 4.3. Let G’ be an AIF graph, AT be the ASPIC argumentation theory based on G,
and G be an AIF graph based on Args op. Then G is isomorphic to G'.

Proof: We first prove that G is an AIF graph based on Args 4. Then the result follows from the
observation that any other G’ based on Args 4 differs at most from G by uniformly substituting
names of nodes in G.

Let G = (V,E) where V. = T U RAU CA U PA. Note that all these elements of G are
defined in Definition 4.2. Let G’ = (V', E’) where V' = I’ U RA’ UCA’ U PA’. We prove
that I' = I, RA' = RA, CA' = CA, PA' = PA and E' = E. We consider all cases of
Definition 4.2 in turn.

1. Note first that A = Args 4, and by construction of AT all rules in R are used in at
least one argument, so Rules(.A) = R. Then Wf£(.A) consists of /C plus all antecedents
and consequents of any rule in R. Moreover, by Lemma 7.1(4,7) all elements of /C and
antecedents and consequents of any rule in R are in I’ U RA’. Therefore I C I'.

Next, by Lemma 7.1(3) any ¢ € I’ is in K or is an antecedent of consequent of a rule in
‘R. Then since each element of IC is in Args 4 and all rules in R are used in at least one
argument in Args 4, we have that I’ C I. Butthen I = I'.

2. By Lemma 7.1(5,6) for any € RA’ there exists a unique rule named r in R, so RA" C
RA. Next, by Lemma 7.1(7) for any rule named r in R it holds that r € RA’, so
RA C RA’. Butthen RA’ = RA.

3. By Lemma 7.1(10) for all ¢ € C'A’ there exist a unique pair (¢, ) € ~ such that (¢, ¢)
and (c, ) are in E’. Moreover, by Lemma 7.1(12) for any pair (¢, 1) € ~ there exists
a unique ¢ € C'A’ such that (¢, ) and (¢/,¢) are in E’. Then ¢ = ¢’. Then choosing
v = c for all such pairs in Definition 4.2(3) yields CA’ = C A.

4. By Lemma 7.1(17) for all p € PA’ there exist a unique pair (¢, ) in either <’ or <.
Moreover, by Lemma 7.1(20,21) for any pair (,%) in <’ or < there exists a unique
p’ € PA’ such that (o, p") and (p’,¢) are in E’. Then p = p’. Then choosing v = p for
all such pairs in Definition 4.2(4) yields PA’ = PA.

For cases (5a-5¢) the following notation is used: for any set of edges E and set of nodes
N,E |n={(v,v')e E|ve Norv € N}.
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5. (a) Letv € I'URA" and r € RA’. By Lemma 7.1(5) all relations (v,r) € E’ are
such that v is an antecedent of » € R. Likewise, by Lemma 7.1(6) all relations
(r,v) € E’ are such that v is the consequent of r € R. Then (v,7) € E and
(r,v) € E, so with (1) we have E' | C E |;. Moreover, if v is an antecedent
of r € R then by Lemma 7.1(7), (v,r) € E’. Likewise, if v is the consequent of
r € R then by Lemma 7.1(7), (r,v) € E’, so with (1) we have E |;C E’ |. But
then £’ ‘[/: E |[.

(b) Letc € CA’. By Lemma 7.1(10) all pairs of pairs (v, ¢), (¢,v") in E’ are such that
there exists a unique pair (v,v’) € ~. Moreover, by Lemma 7.1(12) for every pair
(v,v") € ~ there exists a unique ¢’ € C'A’ such that (v,¢’) € E' and (¢/,v") € E'.
Then ¢ = ¢’. Note that under (3) of this proof v in Definition 4.2(3) was chosen to
be c. Then with (3) we have E' |ca4= F |ca.

() Let p € PA’. By Lemma 7.1(13-16) all pairs of pairs (v,p), (p,v’) in E’ are
such that there exists a unique pair (v,v’) in either < or <’. Moreover, by
Lemma 7.1(20,21) for every pair (v, v") in < or <’ there exists a unique p’ € PA’
such that (v,p’) € E’ and (p/,v') € E’. Then p = p’. Note that under (4)
of this proof v in Definition 4.2(3) was chosen to be p. Then with (4) we have
E' |par=E |pa.

From (5a-c) it follows that &/ = E.

In order to be able to prove identity-preserving translations for E-ASPIC™, we also use the
conditions (3 — 6) from Defintion 2.1. However, the assumptions Al — A3 are adjusted.

e Al’: There are no CA-nodes of the form premise or conclusion.
e A2': There are no CA-nodes of the form preferred element or dispreferred element.

e A3’: There are no CA-nodes of the form conflicting element or conflicted element.

Lemma 7.1 can now be simplified in that E-ASPIC™ has no input orderings but it must be
adjusted to account for the possibility that facts and rules can be or contain preference expres-
sions.

Lemma 7.2 If AT is an E-ASPIC™ argumentation theory based on AIF graph G, then:
l.ieliffic L\ Lg\ L.
2. re€ RAiffr € Lg.
3. Forany ¢ € I itholds that+ € K or % is an antecedent or the consequent of a rule in R.
4. Forany v € K itholds thatv € [ orvisbasedonap € PA.

5. For any r € RA of form strict/defeasible and any v € I U RAU PA, if (v,r) € E, then
there exists a unique inference rule r : vy, ..., v, =/= v, € Rsuchthatv =v; or...
or v = v,, or vy is based on v or ... or v, is based on v.

6. For any r € RA of form strict/defeasible and any v € I U RAU PA, if (r,v) € E, then
there exists a unique inference rule r : vy, ..., v,, —/= v, € R such that v,, = v or v,
is based on v.

7. For any inference rule v : vy,...,v, —/= v, € R it holds that v; € I if v; € Ly,
v; € RAifv; € Lg,and p € PAif v; € L,, and is based on p, and r € RA of form
strict/defeasible and (vi,r),..., (vE,r), (r,vl) € E, where v} = v; or v} is based on
Vi.
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10.

11.
12.

13.
14.

15.

16.

17.

. Forallv € Vandc € CA: if (v,c) € E then for some v and v” it holds that (v, v") € ~

where v"/ = v or v” is based on v.

. Forallv € Vand ¢ € CA: if (¢,v) € E then for some v’ and v” it holds that (v/,v") € ~

where v"/ = v or v” is based on v.

For all ¢ € CA there exist unique v,v’ € I URA U PA such that (v,c) € E and
(¢,v") € E and (w,w’) € ~ such that w/w’ = v/v" or w/w’ is based on v/v'.

For all (v,v’) € ~ itholds thatv /v’ € TURA or v/v’ is based on w/w’ and w/w’ € PA.

For all (v,v") € ~ there exists a unique ¢ € C'A such that (v,c)/(c,v’) € E or ¢/v’ is
based on w/w’ and (w, ¢)/(c,w’) € E.

Lo NWEE(A) = Ly,

Forallv € V and p € PA: if (v,p) € E then for some v’ and v” it holds that v' > v" €
L., is based on p and v’ = v or v’ is based on v.

Forallv € V and p € PA: if (p,v) € E then for some v’ and v" it holds that v” > v €
L, is based on p and v’ = v or v’ is based on v.

For all p € PA there either exist unique v,v’ € I U RA such that (v,p) € E and
(p,v") € Eandv > v' € L2, and v > v’ is based on p; or there exist unique p’, p”" € PA
such that (p,p) € F and (p,p”) € F and there exists a unique ¢ > ¢ € L,, based on p
such that ¢ is based on p’ and 1) is based on p”.

For all v > v’ € L,, there exists a unique p € PA such that v > v’ is based on p and
(v*,p) € E and (p,v"™*) € E where v*/v"* = v/v if v/v' € L, or v*/v"™* = p'/p" if
v/v" € L, and v/v’ is based on p'/p"” € PA.

Proof:

1.
2.

10.
11.
12.

Obvious.

Obvious.

. By construction of K and R in Definition 5.1(2,3) and Definition 2.1(4).

By construction of /C in Definition 5.1(2) and Definition 2.1(3, 4).
By construction of R in Definition 5.1(3) and Definition 2.1(4).
By construction of R in Definition 5.1(3) and Definition 2.1(4).
By construction of R in Definition 5.1(3) and assumption Al’.

By construction of ~ in Definition 5.1(4).

. By construction of ~ in Definition 5.1(4).

From (8,9), assumptions Al’, A2’ and A3’ and Definition 2.1(6).
From Definition 5.1(1,4) and assumption A3’.

From the construction of ~ in Definition 5.1(4) and Definition 2.1(6).
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13.

14.
15.
16.
17.

Since A = Args 4 and by construction of AT all rules in R are used in at least one
argument, we have that Rules(A) = R. Then WE£(.A) consists of /C plus all antecedents
and consequents of any rule in R. We next prove that any element ¢ of £,, is in IC or is
an antecedent or a consequent of a rule in R. By Lemma 7.2(17) we have that ¢ is based
onap € PA’. Next, by construction of &, for any such p that has no incoming RA node
in G we have that ¢ € K while by construction of R and condition (4) (Definition 2.1),
for any such p that has a incoming RA node in G we have that  is an antecedent or a
consequent of a rule in R.

By construction of £,, in Definition 5.1(1b).
By construction of £,, in Definition 5.1(1b).
From (14,15), the construction of £,,, in Definition 5.1(1b) and Definition 2.1(5).

From the construction of £,,, in Definition 5.1(1b) and Definition 2.1(5).

In proving the translation results the proof of Theorem 4.3, no preference relations in E-
ASPICT need to be considered but in turn it must now be proven that when the translation
from E-ASPIC to AIF involves formulas from L,,,, the original PA-nodes and edges involving
PA-nodes are returned.

Theorem 5.3. Let G’ be an AIF graph, AT be the E-ASPIC argumentation theory based on
G’, and G be an AIF graph based on Args yp. Then G is isomorphic to G'.

Proof: The proof of Theorem 4.3 must be adjusted as follows.

1.

5.

As for Theorem 4.3(1), replacing Lemmas 7.1(3), 7.1(4) and 7.1(7) by Lem-
mas 7.2(3), 7.2(4) and 7.2(7) and taking into account that elements of X and antecedents
and consequents of any rule in R may correspond to a node in P A instead of themselves
being in I’ U RA’.

. As for Theorem 4.3(2).
. As for Theorem 4.3(3), replacing Lemmas 7.1(10) and 7.1(12) by Lemmas 7.2(10)

and 7.2(12) and taking into account that ¢ and ) may be based on nodes in C'A’ instead
of themselves being in C A’.

. Note first according to Lemma 7.2(13) we have £,,, "\WEf(A) = L,,. Next, consider any

p € PA’. By Lemma 7.2(16) there exist a unique formula ¢ > 1) € £,,, based on p. By
Lemma 7.2(17) for all ¢ > 1) € L,, there exists a unique p’ € PA’ such that ¢ > ) is
based on p’. So p = p’. Then choosing v = p for all such pairs in Definition 5.1(4) yields
PA, = PA,.

(a) As for Theorem 4.3(5a).

(b) As for Theorem 4.3(5b), replacing Lemmas 7.1(10) and 7.1(12) by Lemmas 7.2(10)
and 7.2(12) and taking into account that v, v’ (such that (v,v’) € ~) may be based
on nodes in PA’ instead of themselves being in I’ U RA’.

(c) Letp € PA'. By Lemma 7.1(14,15) all pairs of pairs (v, p), (p,v) in E’ are such
that there exists a unique formula w > w’ in £, based on p and w/w’ = v/v’ or
w/w' is based on v/v’. Moreover, by Lemma 7.1(17) for every formula formula
w > w' in L,, there exists a unique p’ € PA such that w > w’ is based on p’ and
is such that (w*,p’) € E and (p',w™) € E, where w* /w"™* = w/w' if w/w'" € L,
orw* /w™* = q/q¢ ifw/w' € L,, and w/w' is based on q/q' € PA. Thenp = p’.
Note that under (4) of this proof v in Definition 5.1(4) was chosen to be p. Then
with (4) we have B’ |par= E |pa.

From (5a-c) it follows that £/ = E.
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